Advertisement

Doklady Physics

, Volume 63, Issue 5, pp 208–212 | Cite as

Rod Vibrations Caused by Axial Impact

  • N. F. Morozov
  • A. K. Belyaev
  • P. E. Tovstik
  • T. P. Tovstik
  • A. O. Shurpatov
Mechanics
  • 12 Downloads

Abstract

The axial impact by an elastic body on an elastic-rod end with a fixed opposite end is considered. The propagation of elastic waves in the rod and the local deformations in the contact zone are taken into account. After recoil of the body, the rod performs free longitudinal vibrations, which can under certain conditions cause parametric transverse vibrations having the character of beats. Depending on the parameters of the problem, the collision time, the shock-pulse shape, and the greatest amplitude of the transverse vibrations under parametric resonance are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Morozov and P. E. Tovstik, Vestn. SPbGU. Ser. 1, No. 2, 105 (2009).Google Scholar
  2. 2.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, Mech. Solids 50 (4), 451 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, Vestn. SPbGU. Ser. 1, No. 1, 77 (2016).Google Scholar
  4. 4.
    J. E. Sears, Proc. Cambridge Phil. Soc. 14 (1908).Google Scholar
  5. 5.
    A. Saint-Venant, J. Math. (Liouville) Ser. 2 12 (1867).Google Scholar
  6. 6.
    H. Hertz, Za. f. Math. (Crelle) 92 (1881).Google Scholar
  7. 7.
    V. L. Biderman, Theory of Impact (Mashinostroenie, Moscow, 1952) [in Russian].Google Scholar
  8. 8.
    S. A. Zegzhda, Collisions of Elastic Solids (Izd-vo St.Peterb. Un-ta, 1997) [in Russian].Google Scholar
  9. 9.
    A. K Belyaev, Ch.-Ch. Ma, N. F. Morozov, P. E. Tovstik, T. P. Tovstik, and A. O. Shurpatov, Vestn. SPbU, Matematika, Mekhanika, Astronomiya. Ser. 1 4(62) (3), 506 (2017).Google Scholar
  10. 10.
    A. K. Belyaev, Ch.-Ch. Ma, and A. O. Shurpatov, Nauch. Tekhn. Vedomosti SPbGPU, Fiz.-Mat. Nauki 11 (1) (2018).Google Scholar
  11. 11.
    V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].Google Scholar
  12. 12.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in Theory of Nonlinear Vibrations (Nauka, Moscow, 1969) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. F. Morozov
    • 1
  • A. K. Belyaev
    • 2
  • P. E. Tovstik
    • 1
  • T. P. Tovstik
    • 2
  • A. O. Shurpatov
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Peter-the-Great St.Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations