Advertisement

Doklady Physics

, Volume 63, Issue 4, pp 139–141 | Cite as

Reflection of an Ultrashort Pulse by an Ideally Conducting Cylinder

  • A. S. Bugaev
  • P. A. Golovinski
  • V. A. Astapenko
  • S. V. Sakhno
Physics
  • 19 Downloads

Abstract

A technique for calculating the backscattering of ultrashort pulses of plane waves by an ideally conducting cylinder is described on the basis of the spectral representation. The Rayleigh solution in the Bessel function series representation is used to determine the scattering spectral components. The Gabor impulse reflection is investigated. A method for remote determination of the cylinder diameter from the shift of scattered field amplitude peaks is described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microwave Wireless Comp. Lett. 15 (4), 226 (2005).CrossRefGoogle Scholar
  2. 2.
    J. Han and C. Nguyen, IEEE Microwave Wireless Comp. Lett. 12 (6), 206 (2002).CrossRefGoogle Scholar
  3. 3.
    S. Li and R. R. Jones, Phys. Rev. Lett. 5, 112 (2014).Google Scholar
  4. 4.
    A. G. Stepanov, Opt. Spectrosc. 107 (4), 529 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. Yang and G. B. Giannakis, IEEE Signal Process. Mag. 21, 26 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    R. C. Qiu, IEEE Trans. Wireless Comm. 5, 1 (2006).CrossRefGoogle Scholar
  7. 7.
    M. G. Hassain, H. IEEE AES Syst. Mag. 13, 9 (1998).CrossRefGoogle Scholar
  8. 8.
    X. Li, E. J. Bond, B. D. Van Veen, and S. C. Hagness, IEEE Antennas Propag. Mag. 47, 19 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    C. N. Paulson, J. T. Chang, C. E. Romero, J. Watson, F. J. Pearce, and N. Levin, Proc. SPIE 6007, 60070L(1–12) (2005).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Osipov and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications (Wiley, Chichester, 2017).CrossRefGoogle Scholar
  11. 11.
    P. A. Golovinski and E. M. Mikhailov, Zh. Eksp. Teor. Fiz. 90 (2), 240 (2000).Google Scholar
  12. 12.
    H. Hönl, A. Maue, and K. Westphal, Theorie der Beugung (Springer-Verlag, Berlin, 1961) [in German].Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshits, The Field Theory (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  14. 14.
    P. A. Golovinski and S. N. Kutishchev, Radio Phys. Quantum. Electron. 51 (6), 476 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Bugaev
    • 1
  • P. A. Golovinski
    • 1
    • 2
  • V. A. Astapenko
    • 1
  • S. V. Sakhno
    • 1
  1. 1.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  2. 2.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations