Doklady Physics

, Volume 63, Issue 2, pp 50–54 | Cite as

Formation of Heterogeneous Powder Coatings with a Two-Level Micro-and Nanocomposite Structure under Gas-Dynamic Spraying Conditions

  • A. V. Aborkin
  • M. I. Alymov
  • V. E. Arkhipov
  • D. S. Khrenov


Heterogeneous coatings have been deposited by the cold gas-dynamic spraying of mechanically synthesized AMg2/graphite + Al2O3 powders. A specific feature of the coatings formed is the existence of a two-level micro-and nanocomposite structure. It has been established that an increase in the content of microsized Al2O3 particles in the mixture from 10 to 30 wt % produces a twofold increase in the thickness of the coating deposited for the same time period from 140 to 310 μm. A further growth in the content of microsized Al2O3 particles in the mixture up to 50 wt % leads to a decrease in the thickness of the coating formed to 40 μm. The manufactured coatings have a high microhardness ranging from 1.7 to 3.2 GPa depending on their composition. The high microhardness of these coatings is caused by an increase in the hardness of the matrix material due to the creation of a nanocomposite structure, which strengthens the immobilization of microsized Al2O3 particles in it, thus improving the properties of the heterogeneous coating as a whole.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Alkhimov, V. F. Kosarev, and A. N. Papyrin, Dokl. Akad. Nauk SSSR 315 (5), 1062 (1990).Google Scholar
  2. 2.
    P. Dupuis, Y. Cormier, A. Farjam, B. Jodoin, and A. Corbeil, Int. J. Heat Mass Transfer 69, 34 (2014).CrossRefGoogle Scholar
  3. 3.
    L. Ajdelsztajn, J. M. Schoenung, B. Jodoin, and G. E. Kim, Metall. Mater. Trans. A 36 (3), 657 (2005).CrossRefGoogle Scholar
  4. 4.
    P. Richer, B. Jodoin, L. Ajdelsztajn, and E. J. Lavernia, J. Therm. Spray Technol. 15 (2), 246 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, J. Therm. Spray Technol. 16 (5–6), 661 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    D. Poirier, J.-G. Legoux, R. A. L. Drew, and R. Gauvin, J. Therm. Spray Technol. 20 (1–2), 275 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Aborkin, I. A. Evdokimov, V. E. Vaganov, M. I. Alymov, D. V. Abramov, and K. S. Khor’kov, Nanotechnol. Russ. 11 (5–6), 297 (2016).CrossRefGoogle Scholar
  8. 8.
    C. P. Marshall and M. A. Wilson, Carbon 42 (11), 2179 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, J. Therm. Spray Technol. 15 (3), 382 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Aborkin
    • 1
  • M. I. Alymov
    • 2
  • V. E. Arkhipov
    • 3
  • D. S. Khrenov
    • 1
  1. 1.Vladimir State University named after Alexander and Nikolay StoletovsVladimirRussia
  2. 2.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Mechanical Engineering Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations