Advertisement

Doklady Physics

, Volume 63, Issue 2, pp 45–49 | Cite as

Crystallization of a Mechanically Activated CuTi Alloy

  • D. Yu. Kovalev
  • S. G. Vadchenko
  • N. F. Shkodich
  • S. S. Rouvimov
  • A. S. Rogachev
  • M. I. Alymov
Physics
  • 18 Downloads

Abstract

The atomic structure and amorphous-crystalline transition dynamics in CuTi metallic glass synthesized by high-energy ball milling have been studied. Using high-resolution transmission electron microscopy (HRTEM), it has been shown that the initial amorphous phase contains crystalline inclusions, which are up to 8 nm in size and may serve as crystallization centers. In contrast to the earlier studied amorphous CuTi alloys synthesized by melt spinning, the process of crystallization in the mechanically generated amorphous alloy begins at a lower temperature (250°C) and lasts for 20–30 s. A conclusion about the diffusion mechanism of crystallization in this material has been made.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. K. Kovneristyi, Physicochemical Foundations for the Creation of Amorphous Metallic Alloys (Nauka, Moscow, 1983) [in Russian].Google Scholar
  2. 2.
    A. L. Greer, Science 267 (5206), 1947 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci. 44 (4), 291 (1999).CrossRefGoogle Scholar
  4. 4.
    G. Herzer, Acta Mater. 61 (2), 718 (2013).CrossRefGoogle Scholar
  5. 5.
    B. Zberg, P. J. Uggowitzer, and J. F. Löffler, Nat. Mater. 8 (11), 887 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    W. L. Johnson, Nat. Mater. 14 (6), 553 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. J. Maeland, in Rapidly Quenched Metals, Ed. by S. Steeb and H. Warlimont (Elsevier, Amsterdam, 1985), p. 1507.Google Scholar
  8. 8.
    L. Schultz, Mater. Sci. Eng. 97, 15 (1988).CrossRefGoogle Scholar
  9. 9.
    Fundamental Bases of Mechanical Activation, Mechanosynthesis, and Mechanochemical Technologies, Ed. by E. G. Avvakumova (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2009) [in Russian].Google Scholar
  10. 10.
    D. Yu. Kovalev, S. G. Vadchenko, A. S. Rogachev, A. S. Aronin, and M. I. Alymov, Dokl. Akad. Nauk 473 (1), 28 (2017).Google Scholar
  11. 11.
    A. S. Rogachev, S. G. Vadchenko, A. S. Shchukin, I. D. Kovalev, and A. S. Aronin, JETP Lett. 104 (10), 726 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    T. L. Shanker Rao, K. N. Lad, and A. Pratap, J. Therm. Anal. Calorim. 78 (3), 769 (2004).CrossRefGoogle Scholar
  13. 13.
    C. Politis and W. L. Johnson, J. Appl. Phys. 60 (3), 1147 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Ponomarev and D. Yu. Kovalev, Int. J. Self-Propag. High-Temp. Synth. 14 (2), 111 (2005).Google Scholar
  15. 15.
    Kh. V. Manukyan, C. E. Shuck, M. J. Cherukara, S. Rouvimov, D. Y. Kovalev, A. Strachan, and A. S. Mukasyan, J. Phys. Chem. C 120 (10), 5827 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. Yu. Kovalev
    • 1
  • S. G. Vadchenko
    • 1
  • N. F. Shkodich
    • 1
  • S. S. Rouvimov
    • 2
  • A. S. Rogachev
    • 1
  • M. I. Alymov
    • 1
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.University of Notre DameNotre DameUSA

Personalised recommendations