Doklady Physics

, Volume 62, Issue 6, pp 306–309 | Cite as

Behavior of lateral-deformation coefficients during elastoplastic deformation of metals

Mechanics
  • 15 Downloads

Abstract

The results of investigations into variation of the coefficients of lateral deformation (the Poisson ratio) during single-axis tension of samples of steel 12Kh18N10T and St3, titanium VT1, the aluminum alloy D16AM, copper M1, and a magnesium alloy are considered. The technique developed on the basis of the optoacoustic effect and simultaneous measurements of the longitudinal and surface speeds of sound in metallic samples during the tension makes it possible to measure the rates at various stages of the deformation process. The data obtained make it possible to construct the dependences of variation of the lateral-deformation coefficients at all stages of the plastic flow. The correlation of these variations both with known processes of structural reconstructions at various stages of plastic flow and with the process of localization of plastic-shear bands in the aluminum alloy is noted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Trefilov, V. F. Moiseev, and E. P. Pechkovskii, Deformation Hardening and Destruction of Polycrystalline Metals (Naukova Dumka, Kiev, 1987) [in Russian].Google Scholar
  2. 2.
    G. Leibfried and V. Ludvig, Theory of Anharmonic Effects in Crystals (Izd. Inostrannoi Literatury, Moscow, 1963) [in Russian].Google Scholar
  3. 3.
    V. A. Kuz’menko, New Schemes of Deformation of Solids (Naukova Dumka, Kiev, 1973) [in Russian].Google Scholar
  4. 4.
    V. N. Belomestnykh and E. P. Tesleva, Tech. Phys. 49 (8), 1098 (2004).CrossRefGoogle Scholar
  5. 5.
    D. S. Sanditov, V. V. Mantatov, and B. D. Sanditov, Tech. Phys. 54 (4), 594 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Truell, Ch. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969).Google Scholar
  7. 7.
    L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Macrolocalization of Plastic Flow (Nauka, Novosibirsk, 2008) [in Russian].Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, The Theory of Elasticity (Nauka, Moscow, 1965) [in Russian].Google Scholar
  9. 9.
    V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991) [in Russian].Google Scholar
  10. 10.
    Yu. Sudenkov, B. Zimin, and N. Vovnenko, Thermomechanical Reaction of Solids at Laser Action (Lambert, Saarbrücken, 2011).Google Scholar
  11. 11.
    B. Anasori and M. W. Barsoum, MRS Commun. 3 (4), 245 (2013).CrossRefGoogle Scholar
  12. 12.
    E. V. Lomakin, T. V. Tret’yakova, and V.E. Vil’deman, Docl. Phys. 60 (3), 131 (2015).Google Scholar
  13. 13.
    N. N. Malinin, Applied Theory of Plasticity and Creep (Mashinostroenie, Moscow, 1975) [in Russian].MATHGoogle Scholar
  14. 14.
    G. Knuyt, L. de Schepper, and L. M. Stals, Philos. Mag. B 61 (6), 965 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    E. Pineda, Phys. Rev. B 73 (10), 104 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • B. A. Zimin
    • 1
  • I. V. Smirnov
    • 2
  • Yu. V. Sudenkov
    • 2
  1. 1.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations