Skip to main content
Log in

Mechanical means for controlling the geometry of optical spacecraft attitude control systems and the necessary accuracy of these means

  • Physics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The accuracy of modern spacecraft attitude sensors has recently come to exceed the accuracy provided by the rigidity of the mechanical designs of spacecraft. One possible solution to this problem is to introduce additional sensors measuring the mutual orientation of the attitude sensors into the design of attitude control systems. In this paper we consider the questions of whether the simplest and most reliable mechanical distance measurement sensors can be used and whether their accuracy is sufficient for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Karelin, Yu. N. Zybin, V. O. Knyazev, and A. A. Pozdnyakov, Mekh. Upr. Inform. 7 (2), 120 (2015).

    Google Scholar 

  2. A. V. Nikitin, B. S. Dunaev, and V. A. Krasikov, Mekh. Upr. Inform., No. 2, 62 (2011).

    Google Scholar 

  3. S. A. Dyatlov and R. V. Bessonov, Mekhanika, Mekh. Upr. Inform., No. 1, 11 (2009).

    Google Scholar 

  4. A. I. Zakharov, M. E. Prokhorov, M. S. Tuchin, and O. Yu. Stekolshchikov, Onboard Geometric Control Subsystem for the Attitude Sensors and Target Equipment of Spacecraft, in Proc. Conf. System Analysis, Control, and Navigation (MAI, Moscow, 2014), pp. 64–65 [in Russian].

    Google Scholar 

  5. Data Sheet: REXM/REXT Ultra-high Accuracy Angle Encoder. http://resources.renishaw.com/en/details/data-sheet-rexm-rext-ultra-high-accuracy-angleencoder- 38398.

  6. I. K. Kikoin, Tables of Physical Quantities. Handbook (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  7. Yu. M. Pyatin, A. M. Chernyavskaya, R. A. Vladimirskii, F. Ya. Gubeev, N. P. Zakaznov, Yu. S. Sakatunov, and R. Yu. Sukhorukov, Materials in Instrument Making and Automation (Mashinostroenie, Moscow, 1982) [in Russian].

    Google Scholar 

  8. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  9. D-510 PISeca Capacitive Sensors, Phys. Instrum. GmbH. http://www.physikinstrumente.com/productdetail- page/d-510-500400.html.

  10. D-015, D-050, D-100 Capacitive Sensors, Phys. Instrum. GmbH. http://www.physikinstrumente.com/product-detail-page/d-015-d-050-d-100-500200.html.

  11. D. A. Stewart, A Platform with Six Degrees of Freedom, Proc. Inst. Mech. Eng. 180, Pt. 1, No. 15, 371 (1965).

    Article  Google Scholar 

  12. X.-S. Gao, D. Lei, Q. Liao, and G.-F. Zhang, IEEE Trans. Robotics 21, 141 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Prokhorov.

Additional information

Original Russian Text © M.E. Prokhorov, A.I. Zakharov, M.K. Abubekerov, A.V. Biryukov, A.O. Zhukov, N.L. Krusanova, O.Yu. Stekolshchikov, M.S. Tuchin, 2017, published in Doklady Akademii Nauk, 2017, Vol. 472, No. 5, pp. 521–525.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokhorov, M.E., Zakharov, A.I., Abubekerov, M.K. et al. Mechanical means for controlling the geometry of optical spacecraft attitude control systems and the necessary accuracy of these means. Dokl. Phys. 62, 51–54 (2017). https://doi.org/10.1134/S1028335817020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335817020082

Navigation