Skip to main content
Log in

High-frequency thermal processes in harmonic crystals

  • Mechanics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

We consider two high frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proportional to time. Analytical results are in a good agreement with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. V. Goldshtein and N. F. Morozov, Phys. Mesomech. 10 (5), 17 (2007).

    Google Scholar 

  2. A. M. Krivtsov, Dokl. Phys. 59 (9) (2014).

  3. A. M. Krivtsov, Dynamics of Thermal Processes in One- Dimensional Harmonic Crystals. Questions of Methematical Physics and Applied Mathematics (Ioffe Physical- Technical Institute, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  4. M. B. Babenkov, A. M. Krivtsov, and D. V. Tsvetkov, Phys. Mesomech. 19 (1), 60 (2016).

    Google Scholar 

  5. C. F. Petersen, D. J. Evans, and S. R. Williams, J. Chem. Phys. 144, 074107 (2016).

    Article  ADS  Google Scholar 

  6. F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, Nat. Commun. 6, 6611 (2015).

    Article  ADS  Google Scholar 

  7. B. L. Holian, W. G. Hoover, B. Moran, and G. K. Straub, Phys. Rev. A 22, 2798 (1980).

    Article  ADS  Google Scholar 

  8. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    MATH  Google Scholar 

  9. Z. Rieder, J. L. Lebowitz, and E. Lieb, J. Math. Phys. 8 (5), 1073 (1967).

    Article  ADS  Google Scholar 

  10. A. M. Krivtsov, Dokl. Phys. 60 (9), 407 (2015).

    Article  ADS  Google Scholar 

  11. A. M. Krivtsov, ArXiv:1509.02506 [cond-mat.stat-mech] (2015).

  12. G. Benettin and A. Tenenbaum, Phys. Rev. A 28, 3020 (1983).

    Article  ADS  Google Scholar 

  13. S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377 (1), 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Dhar, Adv. Phys. 57 (5), 457 (2008).

    Article  ADS  Google Scholar 

  15. A. V. Savin and O. V. Gendelman, Phys. Rev. E 67 (4), 041205 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Krivtsov.

Additional information

Original Russian Text © V.A. Kuzkin, A.M. Krivtsov, 2017, published in Doklady Akademii Nauk, 2017, Vol. 472, No. 5, pp. 529–533.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzkin, V.A., Krivtsov, A.M. High-frequency thermal processes in harmonic crystals. Dokl. Phys. 62, 85–89 (2017). https://doi.org/10.1134/S1028335817020070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335817020070

Navigation