Skip to main content
Log in

Low-frequency three-dimensional ultrasonic tomography

  • Physics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The possibility of making ultrasonic 3D tomographs for medical diagnostics of soft tissues was established. The choice of frequencies of ultrasonic pulses of 300–500 kHz was due to low absorption in soft tissues within this range. The reverse problems of ultrasonic tomography, which are three-dimensional and nonlinear, have been considered in a model that takes into account both wave effects and absorption. The effectiveness of algorithms to solve the reverse problems that were developed has been illustrated by model calculations. The velocity configuration has been shown to be recovered better than the function that describes absorption in soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, R. Pevzner, M. Tokarev, E. Holsapple, O. Rama, and R. Duncan, Med. Phys. 32, 1375 (2005).

    Article  Google Scholar 

  2. R. G. Pratt, L. Huang, N. Duric, and P. Littrup, Proc. SPIE 6510, 65104S (2007).

    Article  ADS  Google Scholar 

  3. H. Gemmeke, A. Menshikov, D. Tchernikovski, L. Berger, G. Göbel, M. Birk, M. Zapf, and N. V. Ruiter, Nucl. Sci. Symp. Conf. Record (NSS/MIC), 2010 IEEE (Piscataway, 2010), p. 2449.

    Google Scholar 

  4. M. André, J. Wiskin, D. Borup, S. Johnson, H. OjedaFournier, and L. Olson, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2012), p. 1110.

    Google Scholar 

  5. J. Wiskin, D. T. Borup, S. A. Johnson, and M. Berggren, J. Acoust. Soc. Am. 131, 3802 (2012).

    Article  ADS  Google Scholar 

  6. V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, Acoust. Phys. 60, 479 (2014).

    Article  ADS  Google Scholar 

  7. V. A. Burov, D. I. Zotov, and O. D. Rumyantseva, Acoust. Phys. 61, 231 (2015).

    Article  ADS  Google Scholar 

  8. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, Wave Motion 51, 389 (2014).

    Article  MathSciNet  Google Scholar 

  9. F. Natterer, Acoustic mammography in the time domain, Preprint, Inst. Appl. Math. (2008). http:// wwwmathuni-muensterde/num/Preprints/files/80pdf.

    Google Scholar 

  10. L. Pestov, J. Inverse Ill-Posed Probl. 22, 245 (2014).

    Article  MathSciNet  Google Scholar 

  11. F. Natterer, Contemp. Math. 559, 151 (2011).

    Article  MathSciNet  Google Scholar 

  12. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  13. A. V. Goncharskii and S. Yu. Romanov, Comput. Math. Math. Phys. 52, 245 (2012).

    Article  MathSciNet  Google Scholar 

  14. A. V. Goncharsky and S. Y. Romanov, Inverse Probl. 29, 075004 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. V. Goncharsky and S. Y. Romanov, Phys. Med. Biol. 59, 1979 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Goncharsky.

Additional information

Original Russian Text © A.V. Goncharsky, S.Yu. Romanov, S.Yu. Seryozhnikov, 2016, published in Doklady Akademii Nauk, 2016, Vol. 468, No. 3, pp. 268–271.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharsky, A.V., Romanov, S.Y. & Seryozhnikov, S.Y. Low-frequency three-dimensional ultrasonic tomography. Dokl. Phys. 61, 211–214 (2016). https://doi.org/10.1134/S1028335816050086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335816050086

Navigation