Advertisement

Doklady Physics

, Volume 61, Issue 3, pp 143–146 | Cite as

Determining characteristic plastic-relaxation times using micro- and nanocrystalline nickel as an example

  • E. N. Borodin
  • N. S. Selyutina
  • Yu. V. Petrov
Mechanics

Abstract

Based on the concept of the incubation time of plastic deformation, an integral yield criterion is introduced and time effects of irreversible deformation are considered. The efficiency of the approach is demonstrated using micro and nanocrystalline nickel as an example. The parameters of the phenomenological model are treated physically from the viewpoint of the behavior of the defect structure of the material, which is controlled by the dislocation sliding and grain-boundary slip mechanisms in a wide range of the rate of deformation.

Keywords

Relaxation Model Characteristic Relaxation Time Nanocrystalline Nickel Static Yield Stress Whisker Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, J. Appl. Phys. 113, 193508 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    G. V. Berezhkova, Whisker Crystals (Nauka, Moscow, 1969) [in Russian].Google Scholar
  3. 3.
    A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Monig, and O. Kraft, Acta Mater. 60, 3985 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Rajaraman, K. N. Jonnalagadda, and P. Ghosh, in Proceedings of the Annual Conf. on Experim. and Appl. Mech. (Kanzas, 2012), Vol. 1. Dynamic Behavior of Materials.Google Scholar
  5. 5.
    A. A. Gruzdkov and Yu. V. Petrov, Doklady Physics 44, 114 (1999).ADSGoogle Scholar
  6. 6.
    A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44, 2080 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. V. Petrov and Y. V. Sitnikova, Tech. Phys. 50, 1034 (2005).CrossRefGoogle Scholar
  8. 8.
    A. A. Gruzdkov, E. V. Sitnikova, N. F. Morozov, and Y. V. Petrov, Math. Mech. Solid. 14, 72 (2009).MathSciNetCrossRefGoogle Scholar
  9. 9.
    I. N. Borodin and Yu. V. Petrov, Mech. Solids 49, 635 (2014).CrossRefGoogle Scholar
  10. 10.
    Yu. V. Petrov and E. N. Borodin, Phys. Solid State 57, 353 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge Univ. Press, New York, 2009).zbMATHGoogle Scholar
  12. 12.
    E. N. Borodin and A. E. Mayer, Mat. Sci. Eng. A 532, 245 (2012).CrossRefGoogle Scholar
  13. 13.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity. Course of Theoretical Physics (Pergamon, New York, 1986), Vol. 7.Google Scholar
  14. 14.
    R. L. Coble, J. Appl. Phys. 34, 1679 (1963).ADSCrossRefGoogle Scholar
  15. 15.
    J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen, Nature 391, 561 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. N. Borodin
    • 1
  • N. S. Selyutina
    • 2
  • Yu. V. Petrov
    • 2
    • 3
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations