Abstract
In this study, it is shown that the linear instability of the Hagen–Poiseuille (HP) flow for the finite Reynolds numbers Re > Re th is nevertheless possible but only under the condition of refusal to use the traditional “normal” form of disturbances.
This is a preview of subscription content, access via your institution.
References
- 1.
O. Reynolds, Proc. Roy. Soc. London 35, 84 (1883).
- 2.
D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976).
- 3.
P. G. Drazin and N. H. Reid, Hydrodynamic Stability (Cambridge: Cambridge Univ. Press, 1981).
- 4.
L. D. Landau and E. M. Lifshitz, Theoretical Physics: Hydrodynamics (Moscow, 2006) [in Russian].
- 5.
S. Grossman, Rev. Mod. Phys. 72 (2), 603 (2000).
- 6.
R. Fitzegerald, Phys. Today 57 (2), 21 (2004).
- 7.
H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91 (22), 224502 (2003).
- 8.
H. Wedin and R. Kerswell, Fluid Mech. 508, 333 (2004).
- 9.
W. Pfenniger, in Boundary Layer and Flow Control (Pergamon, Oxford, 1961), Vol. 2, p. 970.
- 10.
J. A. Fox, M. Lessen, and W. V. Bhat, Phys. Fluids 11 (1), 1 (1968).
- 11.
S. G. Chefranov and A. G. Chefranov, Zh. Eksp. Teor. Fiz. 146 (2), 373 (2014).
- 12.
G. Z. Gershuni, Soros. Obrazovat. Zhurn. Fizika, No. 2, 99 (1997).
- 13.
G. B. Schubauer and H. K. Skramstad, J. Aeronaut. Sci. 14 (2), 69 (1947).
- 14.
S. G. Chefranov, JETP Lett. 73 (6), 274 (2001).
- 15.
G. Lamb, Hydrodynamics (Moscow, Leningrad, 1947) [in Russian].
Author information
Affiliations
Corresponding author
Additional information
Original Russian Text © S.G. Chefranov, A.G. Chefranov, 2015, published in Doklady Akademii Nauk, 2015, Vol. 463, No. 3, pp. 286–292.
Rights and permissions
About this article
Cite this article
Chefranov, S.G., Chefranov, A.G. The Hagen–Poiseuille linear flow instability. Dokl. Phys. 60, 327–332 (2015). https://doi.org/10.1134/S1028335815070083
Received:
Published:
Issue Date:
Keywords
- Reynolds Number
- DOKLADY Physic
- Flow Instability
- Energy Method
- Tube Axis