Advertisement

Doklady Physics

, Volume 60, Issue 7, pp 327–332 | Cite as

The Hagen–Poiseuille linear flow instability

  • S. G. ChefranovEmail author
  • A. G. Chefranov
Mechanics

Abstract

In this study, it is shown that the linear instability of the Hagen–Poiseuille (HP) flow for the finite Reynolds numbers Re > Re th is nevertheless possible but only under the condition of refusal to use the traditional “normal” form of disturbances.

Keywords

Reynolds Number DOKLADY Physic Flow Instability Energy Method Tube Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Reynolds, Proc. Roy. Soc. London 35, 84 (1883).CrossRefGoogle Scholar
  2. 2.
    D. Joseph, Stability of Fluid Motions (Springer, Berlin, 1976).Google Scholar
  3. 3.
    P. G. Drazin and N. H. Reid, Hydrodynamic Stability (Cambridge: Cambridge Univ. Press, 1981).zbMATHGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Theoretical Physics: Hydrodynamics (Moscow, 2006) [in Russian].Google Scholar
  5. 5.
    S. Grossman, Rev. Mod. Phys. 72 (2), 603 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    R. Fitzegerald, Phys. Today 57 (2), 21 (2004).CrossRefGoogle Scholar
  7. 7.
    H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91 (22), 224502 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    H. Wedin and R. Kerswell, Fluid Mech. 508, 333 (2004).MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    W. Pfenniger, in Boundary Layer and Flow Control (Pergamon, Oxford, 1961), Vol. 2, p. 970.Google Scholar
  10. 10.
    J. A. Fox, M. Lessen, and W. V. Bhat, Phys. Fluids 11 (1), 1 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    S. G. Chefranov and A. G. Chefranov, Zh. Eksp. Teor. Fiz. 146 (2), 373 (2014).MathSciNetGoogle Scholar
  12. 12.
    G. Z. Gershuni, Soros. Obrazovat. Zhurn. Fizika, No. 2, 99 (1997).Google Scholar
  13. 13.
    G. B. Schubauer and H. K. Skramstad, J. Aeronaut. Sci. 14 (2), 69 (1947).CrossRefGoogle Scholar
  14. 14.
    S. G. Chefranov, JETP Lett. 73 (6), 274 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    G. Lamb, Hydrodynamics (Moscow, Leningrad, 1947) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Russian Academy of SciencesMoscowRussia
  2. 2.East Mediterranean UniversityFamagusta, NorthernCyprus

Personalised recommendations