Advertisement

Doklady Physics

, Volume 59, Issue 6, pp 254–258 | Cite as

Oscillation stop as a way to determine spectral characteristics of a graphene resonator

  • N. F. Morozov
  • I. E. BerinskiiEmail author
  • D. A. Indeitsev
  • O. V. Privalova
  • D. Yu. Skubov
  • L. V. Shtukin
Physics

Abstract

A nanoresonator based on a graphene layer is investigated as an electromechanical oscillatory system. Mechanical oscillations are excited in it by a high-frequency alternating electric field. A nanoresonator is considered as a capacitor with kinematically varying capacity of the determined transverse deformation of the graphene layer as one of its plates. In the case of small ratios of energy accumulated in a capacitor to the amplitude of energy of mechanical oscillations and the time constant of the capacitor charge to the period of free oscillations, excitation of both common and parametric resonances is possible. It is shown that upon decreasing the external frequency lower than the half-frequency of free oscillations, the cessation of forced oscillations of the nanolayer is observed. This makes it possible to determine more reliably the variations in the intrinsic frequency of the nanoresonator upon deposition of a nanoparticle on it.

Keywords

Graphene Layer DOKLADY Physic Mechanical Oscillation Capacitor Charge External Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Eom, H. S. Park, D. S. Yoon, and T. Kwon, Phys. Reports 503, 115 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    Ya. S. Grinberg, Yu. Ya. Pashkin, and E. V. Il’ichev, Usp. Fiz. Nauk 182(4), 407 (2012).CrossRefGoogle Scholar
  3. 3.
    J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I.W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Graighead, and P. L. McEuen, Science 315(5811), 490 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    N. E. Firsova and Y. A. Firsov, J. Phys. D: Appl. Phys. 45, 435102 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    E. A. Kim and A. H. Castro Neto, Europhys. Lett. 84, 57007 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. F. Morozov
    • 1
  • I. E. Berinskii
    • 1
    • 2
    Email author
  • D. A. Indeitsev
    • 1
    • 2
  • O. V. Privalova
    • 2
  • D. Yu. Skubov
    • 1
    • 2
  • L. V. Shtukin
    • 1
    • 2
  1. 1.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesVasil’evskii Ostrov, St. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations