Skip to main content
Log in

Vibration analog of a superradiant quantum transition

  • Physics
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A vibrational analog of the superradiant quantum transition (SQT) in a classical system of weakly bound oscillators of van der Pole-Duffing (self-generators), in which the coupling element is a linear oscillator, is described. Such an analog is a strongly modulated oscillatory process of almost complete periodic energy exchange between the generators. This type of mode is alternative to nonlinear normal modes (NNM) and close in its character to limiting phase trajectories (LPTs), which have been introduced recently as applied to conservative systems, but in contrast to them, as the attractor. It is shown that the necessary condition of the transition to intense energy exchange in the classical system is the instability of one of the NNMs similarly to that when the condition of the superradiant transition is the instability of the ground state in a quantum model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Garraway, Phil. Trans. Roy. Soc. A, No. 369, 1137 (2011).

    Google Scholar 

  2. R. H. Dicke, Phys. Rev. A, No. 93, 99 (1954).

    Google Scholar 

  3. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, Phys. Rev. A No. 75, 013804 (2007).

    Google Scholar 

  4. Yu. A. Il’inskii and N. S. Maslova, Zh. Eksp. Teor. Fiz. 94(1), 171 (1988).

    ADS  Google Scholar 

  5. C. L. Pando Lambruschini, Europhys. Lett., No. 11, 391 (1990).

    Google Scholar 

  6. G. Preparata, in QED Coherence in Matter (World Sci., Singapore, 1995), pp. 41–50.

    Book  Google Scholar 

  7. A. F. Vakakis, L. I. Manevitch, Yu. V. Mlkhlin, V. N. Pilipchuk, and A. A. Zevin, Normal Modes and Localization in Nonlinear Systems (New York, Wiley, 1996).

    Book  MATH  Google Scholar 

  8. Y. Starosvetsky and L. I. Manevitch, Phys. Rev. E, No. 83, 046211 (2011).

    Google Scholar 

  9. L. I. Manevitch, Arch. Appl. Mech. 77(5), 301 (2007).

    Article  ADS  MATH  Google Scholar 

  10. L. I. Manevitch and V. V. Smirnov, Phys. Rev. E, No. 82, 036602 (2010).

    Google Scholar 

  11. Kadji H. G. Enjieu and R. Yamapi, Physica A 370(2), 316 (2006).

    Article  ADS  Google Scholar 

  12. A. P. Kuznetsov, N. V. Stankevich, and L. V. Turukina, Phys. D 238(14), 1203 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Maccari, J. Comput. Nonlinear Dyn. 6(1), 011016 (2011).

    Article  MathSciNet  Google Scholar 

  14. I. Semenov, Yu. Mitrishkin, A. Subbotin, A. Vertinski, and N. Marusov, Plasma Phys. Repts. 32(2), 1 (2006).

    Google Scholar 

  15. R. FitzHugh, Biophysics J., No. 1, 445 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Manevitch.

Additional information

Original Russian Text © L.I. Manevitch, M.A. Kovaleva, 2013, published in Doklady Akademii Nauk, 2013, Vol. 452, No. 5, pp. 514–517.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manevitch, L.I., Kovaleva, M.A. Vibration analog of a superradiant quantum transition. Dokl. Phys. 58, 428–432 (2013). https://doi.org/10.1134/S1028335813100078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335813100078

Keywords

Navigation