Ab initio calculations of thermal conductivity of metals with hot electrons


Warm dense matter (WDM) is a state of a substance with a solid-state density and temperature from 1 to 100 eV. Researchers believe that such a state exists in the cores of giant planets. Investigation of WDM is important for some applications, such as surface treatment on the nanometer scale, laser ablation, and the formation of the plasma sources of the X-ray radiation into the inertial synthesis. In this study, the conductivity and the thermal conductivity are calculated based on density functional theory and the Kubo-Greenwood theory. This approach was already used to simulate the transport properties in a broad range of densities and temperatures, and its efficiency has been demonstrated. The conductivity and the thermal conductivity of aluminum and gold are investigated. Both the isothermal state, when the electron temperature equals the ion temperature, and the two-temperature state, when the electron temperature exceeds the ion temperature, are considered. The calculations were performed for a solid body and liquid in the range of electron temperatures from 0 to 6 eV.

This is a preview of subscription content, log in to check access.


  1. 1.

    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    R. Ernstorfer, M. Harb, C. T. Hebeisen, et al., Science 323, 1033 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, et al., JETP 107(1), 1 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    G. E. Norman, S. V. Starikov, and V. V. Stegailov, JETP 114(5), 792 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    V. V. Stegailov, Contribs Plasma Phys. 50(1), 31 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    N. A. Inogamov and Yu. V. Petrov, JETP 110(3), 446 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    M. E. Povarnitsyn, D. V. Knyazev, and P. R. Levashov, Contrib. Plasma Phys. 52(2), 145 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11196 (1996).

    Article  Google Scholar 

  9. 9.

    G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993).

    ADS  Article  Google Scholar 

  10. 10.

    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    ADS  Article  Google Scholar 

  11. 11.

    X. Gonze, Phys. Rev. B 55, 10337 (1997).

    ADS  Article  Google Scholar 

  12. 12.

    Y. Waseda, The Structure of Non-Crystalline Materials (New York, McGraw-Hill, 1980).

    Google Scholar 

  13. 13.

    V. Recoules and J. Crocombette, Phys. Rev. B 72, 1 (2005).

    Article  Google Scholar 

  14. 14.

    M. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401R (2002).

    ADS  Article  Google Scholar 

  15. 15.

    E. Apfelbaum, Phys. Rev. E 84(6), 16 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. A. Zhilyaev.

Additional information

Original Russian Text © P.A. Zhilyaev, G.E. Norman, V.V. Stegailov, 2013, published in Doklady Akademii Nauk, 2013, Vol. 451, No. 6, pp. 629–633.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhilyaev, P.A., Norman, G.E. & Stegailov, V.V. Ab initio calculations of thermal conductivity of metals with hot electrons. Dokl. Phys. 58, 334–338 (2013). https://doi.org/10.1134/S1028335813080168

Download citation


  • Electron Temperature
  • DOKLADY Physic
  • Optical Conductivity
  • Liquid Aluminum
  • Thermal Conductivity Coefficient