Doklady Physics

, Volume 58, Issue 8, pp 334–338 | Cite as

Ab initio calculations of thermal conductivity of metals with hot electrons

  • P. A. ZhilyaevEmail author
  • G. E. Norman
  • V. V. Stegailov


Warm dense matter (WDM) is a state of a substance with a solid-state density and temperature from 1 to 100 eV. Researchers believe that such a state exists in the cores of giant planets. Investigation of WDM is important for some applications, such as surface treatment on the nanometer scale, laser ablation, and the formation of the plasma sources of the X-ray radiation into the inertial synthesis. In this study, the conductivity and the thermal conductivity are calculated based on density functional theory and the Kubo-Greenwood theory. This approach was already used to simulate the transport properties in a broad range of densities and temperatures, and its efficiency has been demonstrated. The conductivity and the thermal conductivity of aluminum and gold are investigated. Both the isothermal state, when the electron temperature equals the ion temperature, and the two-temperature state, when the electron temperature exceeds the ion temperature, are considered. The calculations were performed for a solid body and liquid in the range of electron temperatures from 0 to 6 eV.


Electron Temperature DOKLADY Physic Optical Conductivity Liquid Aluminum Thermal Conductivity Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    R. Ernstorfer, M. Harb, C. T. Hebeisen, et al., Science 323, 1033 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    N. A. Inogamov, V. V. Zhakhovskii, S. I. Ashitkov, et al., JETP 107(1), 1 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    G. E. Norman, S. V. Starikov, and V. V. Stegailov, JETP 114(5), 792 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Stegailov, Contribs Plasma Phys. 50(1), 31 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Inogamov and Yu. V. Petrov, JETP 110(3), 446 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. E. Povarnitsyn, D. V. Knyazev, and P. R. Levashov, Contrib. Plasma Phys. 52(2), 145 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11196 (1996).CrossRefGoogle Scholar
  9. 9.
    G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    X. Gonze, Phys. Rev. B 55, 10337 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Waseda, The Structure of Non-Crystalline Materials (New York, McGraw-Hill, 1980).Google Scholar
  13. 13.
    V. Recoules and J. Crocombette, Phys. Rev. B 72, 1 (2005).CrossRefGoogle Scholar
  14. 14.
    M. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401R (2002).ADSCrossRefGoogle Scholar
  15. 15.
    E. Apfelbaum, Phys. Rev. E 84(6), 16 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • P. A. Zhilyaev
    • 1
    • 2
    Email author
  • G. E. Norman
    • 1
    • 2
  • V. V. Stegailov
    • 1
    • 2
  1. 1.Institute of High Temperatures Scientific Association (IVTAN)Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations