Skip to main content
Log in

Dissociation Kinetics of Methane Hydrate in Frozen Rocks under Decreasing External Pressure: Mathematical and Experimental Modeling

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The results of mathematical and experimental modeling of dissociation of pore methane hydrate in ice- and gas-bearing sediments with a decrease in the external pressure below equilibrium are presented. The described model of pore gas hydrate dissociation at negative temperatures, along with the experiment, makes it possible to calculate the kinetics of this process. A comparative analysis of the results is conducted. The proposed mathematical model confirms the trend of decreasing hydrate saturation of frozen soil in the form of \({{S}_{h}}\sim A{{\tau }^{{ - n}}}\) obtained previously in experiments. These experiments have made it possible to calculate the coefficients A and n, while the mathematical modeling shows how these coefficients depend on the problem parameters. The theoretically estimated properties of the coefficient fully confirm the experimental data. The results of experimental and mathematical modeling have implications for key factors that determine the self-preservation of pore methane hydrates in frozen sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. A. Istomin and V. S. Yakushev, Gas Hydrates under Natural Conditions (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  2. N. N. Romanovskii, Fundamentals of Cryogenesis in the Lithosphere (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  3. E. M. Chuvilin, V. S. Yakushev, and E. V. Perlova, Polarforschung 68, 215–219 (2000).

    Google Scholar 

  4. A. A. Trofimuk, Yu. F. Makogon, and V. S. Yakushev, Sov. Geol. Geofiz. 27 (11), 3–10 (1986).

    Google Scholar 

  5. V. S. Yakushev, Natural Gas and Gas Hydrates in Cryolithozone (LLC VNIIGAZ, Moscow, 2009) [in Russian].

    Google Scholar 

  6. E. Chuvilin, B. Bukhanov, D. Davletshina, S. Grebenkin, and V. Istomin, Geosciences 8 (12), 431:1–431:12 (2018).

  7. E. D. Ershov, Yu. P. Lebedenko, E. M. Chuvilin, V. A. Istomin, and V. S. Yakushev, Dokl. Akad. Nauk 321 (4), 788–791 (1991).

    CAS  Google Scholar 

  8. V. S. Yakushev, E. V. Perlova, N. A. Makhonina, E. M. Chuvilin, and E. V. Kozlova, Ross. Khim. Zh., No. 3, 80–90 (2003).

  9. A. Hachikubo, S. Takeya, E. Chuvilin, and V. Istomin, Phys. Chem. Chem. Phys. 13, 17449–17452 (2011).

    Article  CAS  Google Scholar 

  10. L. S. Podenko, A. O. Drachuk, N. S. Molokotina, and A. N. Nesterov, Zh. Fiz. Khim. 92 (2), 239–246 (2018).

    Google Scholar 

  11. E. Chuvilin, D. Davletshina, B. Bukhanov, A. Mukhametdinova, and V. Istomin, Geosciences 12 (11) (2022). https://doi.org/10.3390/geosciences12110419

  12. H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Chem. Eng. Sci. 118, 208–213 (2014).

    Article  CAS  Google Scholar 

  13. S. Y. Misyura and I. G. Donskoy, Chem. Eng. Sci. 148, 65–77 (2016).

    Article  CAS  Google Scholar 

  14. G. I. Barenblatt, L. I. Lobkovsky, and R. I. Nigmatulin, Dokl. Earth Sci. 470 (2), 1046–1050 (2016).

    Article  CAS  Google Scholar 

  15. M. M. Ramazanov and L. I. Lobkovskii, Fluid Dyn. 53 (4), 517–531 (2018).

    Article  Google Scholar 

  16. L. I. Lobkovskii and M. M. Ramazanov, Dokl. Earth Sci. 484 (1), 105–109 (2019).

    Article  CAS  Google Scholar 

  17. V. A. Vlasov, Inzh.-Fiz. Zh. 92 (6), 2449–2457 (2019).

    Google Scholar 

  18. L. I. Lobkovsky, M. M. Ramazanov, I. P. Semiletov, and D. A. Alekseev, Geosciences 12 (9), 345 (2022). https://doi.org/10.3390/geosciences12090345

    Article  CAS  Google Scholar 

  19. E. M. Chuvilin, D. A. Davletshina, and M. V. Lupachik, Earth’s Cryosphere 23 (2), 44–52 (2019). https://doi.org/10.21782/EC2541-9994-2019-2

    Article  Google Scholar 

  20. N. Shakhova, I. Semiletov, V. Sergienko, L. Lobkovsky, V. Yusupov, A. Salyuk, A. Salomatin, D. Chernykh, D. Kosmach, G. Panteleev, D. Nicolsky, V. Samarkin, S. Joye, A. Charkin, O. Dudarev, A. Meluzov, and O. Gustafsson, Philos. Trans. A Math. Phys. Eng. Sci. 373 (2052) (2015). https://doi.org/10.1098/rsta.2014.0451

Download references

Funding

This work was supported by the Russian Science Foundation (grant nos. 22-67-00025, 21-77-10074, and 22-17-00112). We are grateful to Ministry of Science and Higher Education of the Russian Federation for the support provided to Tomsk State University under the project “Priority-2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ramazanov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by L. Mukhortova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazanov, M.M., Bulgakova, N.S., Lobkovsky, L.I. et al. Dissociation Kinetics of Methane Hydrate in Frozen Rocks under Decreasing External Pressure: Mathematical and Experimental Modeling. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X24601391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X24601391

Keywords:

Navigation