Skip to main content
Log in

Crystallization Temperatures of Komatiitic Basalts from the Vetrenyi Belt, Karelia Based on the Alumina Partition between Olivine and Chromite

  • PETROLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The Archean–Proterozoic transition in the Earth’s history is marked by significant changes in the mantle dynamics and temperature regimes. A notable consequence is the disappearance of Al-depleted komatiites in the Late Archean and an almost complete absence of Archean-typical peridotitic komatiites since the Proterozoic. This work presents a study of the 2.41 Ga komatiitic basalts from the Vetrenyi Belt, dating back to the early Proterozoic. Unique data on the compositions of olivine and chromite, as well as on the crystallization temperatures based on Al-in-olivine geothermometry for komatiitic basalts from the Vetrenyi Belt are provided. The temperatures of the earliest stages of crystallization were approximately 1240 ± 25°C, which indicates the occurrence of water in the melt and is consistent with measured water contents of 0.4 ± 0.2 wt % H2O in the melt inclusions. However, during crystallization, the komatiitic basalt melt underwent degassing, resulting in mass crystallization of the system and a temperature rise by ~20°C due to the release of the latent heat of crystallization. The degassing of water from the melt suggests crystallization under surface conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. J. Bickle, C. J. Hawkesworth, A. Martin, et al., Nature 263 (5578), 577–580 (1976).

    Article  CAS  Google Scholar 

  2. S. J. Barnes and M. Often, Contrib. Mineral. Petrol. 105 (1), 42–54 (1990).

    Article  CAS  Google Scholar 

  3. N. T. Arndt, G. E. Brugmann, K. Lehnert, et al., Spec. Publ.—Geol. Soc. London 33 (1), 133–145 (1987).

    Article  Google Scholar 

  4. L. M. Echeverria, Contrib. Mineral. Petrol. 73 (3), 253–266 (1980).

    Article  CAS  Google Scholar 

  5. E. Hanski, R. J. Walker, H. Huhma, et al., Contrib. Mineral. Petrol. 147, 453–469 (2004).

    Article  CAS  Google Scholar 

  6. I. S. Puchtel, K. M. Haase, A. W. Hofmann, et al., Geochim. Cosmochim. Acta 61 (6), 1205–1222 (1997).

    Article  CAS  Google Scholar 

  7. I. S. Puchtel, M. Touboul, J. Blichert-Toft, et al., Geochim. Cosmochim. Acta 180, 227–255 (2016).

    Article  CAS  Google Scholar 

  8. N. Nekrylov, V. S. Kamenetsky, D. P. Savelyev, et al., Lithos 412, 106608 (2022).

  9. V. G. Batanova, J. M. Thompson, L. V. Danyushevsky, et al., Geostand. Geoanal. Res. 43 (3), 453–473 (2019).

    Article  CAS  Google Scholar 

  10. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, et al., Science 316 (5823), 412–417 (2007).

    Article  CAS  Google Scholar 

  11. E. V. Asafov, A. N. Koshlyakova, A. V. Sobolev, et al., in Proc. All-Russian Annu. Seminar on Experimental Mineralogy, Petrology, and Geochemistry (Moscow, 2023), Vol. 782, pp. 53–56 [in Russian].

  12. L. A. Coogan, A. D. Saunders, and R. N. Wilson, Chem. Geol. 368, 1–10 (2014).

    Article  CAS  Google Scholar 

  13. C. Ballhaus, R. F. Berry, and D. H. Green, Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  CAS  Google Scholar 

  14. G. A. Gaetani and T. L. Grove, Contrib. Mineral. Petrol. 131, 323–346 (1998).

    Article  CAS  Google Scholar 

  15. A. V. Sobolev, E. V. Asafov, A. A. Gurenko, et al., Nature 531 (7596), 628–632 (2016).

    Article  CAS  Google Scholar 

  16. J. Blundy, K. Cashman, and M. Humphreys, Nature 443 (7107), 76–80 (2006).

    Article  CAS  Google Scholar 

  17. L. V. Danyushevsky and P. Y. Plechov, Geochem. Geophys. Geosyst. 12 (7) (2011).

  18. C. E. Ford, D. G. Russell, J. A. Craven, et al., J. Petrol. 24 (3), 256–266 (1983).

    Article  CAS  Google Scholar 

  19. A. A. Ariskin, M. Y. Frenkel, G. S. Barmina, and R. L. Nielsen, Comput. Geosci. 19 (8), 1155–1170 (1993).

    Article  CAS  Google Scholar 

  20. A. A. Ariskin and G. S. Nikolaev, Contrib. Mineral. Petrol. 123, 282–292 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.S. Pukhtel for providing the samples for the study and V.O. Yapaskurt for his assistance in microprobe research.

Funding

This work was supported by the Russian Science Foundation, grant no. 22-77-00081, https://rscf.ru/project/22-77-00081/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Asafov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by L. Mukhortova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asafov, E.V., Koshlyakova, A.N., Sobolev, A.V. et al. Crystallization Temperatures of Komatiitic Basalts from the Vetrenyi Belt, Karelia Based on the Alumina Partition between Olivine and Chromite. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X24601305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X24601305

Keywords:

Navigation