Skip to main content
Log in

Water Balance of the Caspian Sea in the Last Glacial Maximum and Pre-Industrial Conditions Based on the Experiments with the INMIO-CICE General Sea Circulation Model

  • OCEANOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The INMIO-CICE hydrodynamic model of the Caspian Sea was used to calculate equilibrium river runoff and evaporation from the sea surface over a wide range of sea levels (from –85 to +50 m a.s.l.) for different climatic conditions: the Last Glacial Maximum (about 21 ka BP) and the pre-industrial climate (~1850). Data from the INMCM4.8 climate model were used as boundary conditions. It was found out that a river runoff of about 400 km3/yr was required in the Last Glacial Maximum to maintain the sea level at 35–50 m a.s.l. corresponding to the maximum values of the Khvalynian transgression. In the Last Glacial Maximum, evaporation from the sea surface decreased by 105–175 mm (12–22%), and a precipitation layer, according to the INMCM4.8 model, decreased by 50–70 mm (15–30%). These conditions caused the equilibrium runoff to decrease by about 10–20% compared to the pre-industrial conditions. Smaller absolute and relative changes corresponded to lower sea levels. The maximum evaporation decrease occurred at 5 m a.s.l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Arpe, L. Bengtsson, G. S. Golitsyn, I. I. Mokhov, V. A. Semenov, and P. V. Sporyshev, Dokl. Earth Sci. 366 (2), 552–557 (1999).

    Google Scholar 

  2. R. N. Kurbanov, V. R. Belyaev, M. I. Svistunov, E. A. Butuzova, D. A. Solodovnikov, N. A. Taratunina, and T. A. Yanina, Izv. Ross. Akad. Nauk, Ser. Geogr. 87 (3), 403–419 (2023).

    Google Scholar 

  3. River Mouths of the Caspian Region: History of Formation, Modern Hydrological-Morphological Processes and Dangerous Hydrological Phenomena, Ed. by V. N. Mikhailov (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  4. Water Balance and Level Fluctuation of the Caspian Sea: Simulation and Prediction, Ed. by E. S. Nesterov (Triada LTD, Moscow, 2016) [in Russian].

    Google Scholar 

  5. P. A. Morozova, Led Sneg, No. 1 (125), 113–124 (2014).

  6. P. A. Morozova, K. V. Ushakov, V. A. Semenov, and E. M. Volodin, Water Resour. 48 (6), 823–830 (2021).

    Article  CAS  Google Scholar 

  7. R. V. Nikolaeva and V. N. Bortnik, Vodn. Resur. 21 (4/5), 410–414 (1994).

    Google Scholar 

  8. A. V. Panin, A. Yu. Sidorchuk, and V. Yu. Ukraintsev, Water Resour. 48 (6), 877–886 (2021).

    Article  CAS  Google Scholar 

  9. A. Yu. Sidorchuk, A. V. Panin, and V. Yu. Ukraintsev, Water Resour. 48 (6), 864–877 (2021).

    Article  CAS  Google Scholar 

  10. R. Fadeev, K. Ushakov, M. Tolstykh, and R. Ibrayev, Russ. J. Num. Anal. Math. Modell. 33 (6), 333–340 (2018).

    Article  Google Scholar 

  11. A. Gelfan, A. Panin, A. Kalugin, P. Morozova, V. Semenov, A. Sidorchuk, V. Ukraintsev, and K. Ushakov, Hydrol. Earth Syst. Sci. 28, 241–259 (2024).

  12. E. C. Hunke, W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5. Technical Report No. LA-CC-06-012.

  13. R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, Izv. Atmos. Oceanic Phys. 48, 37–46 (2012).

    Article  Google Scholar 

  14. M. Kageyama, S. P. Harrison, M.-L. Kapsch, M. Lofverstrom, J. M. Lora, U. Mikolajewicz, S. Sherriff-Tadano, T. Vadsaria, A. Abe-Ouchi, N. Bouttes, D. Chandan, L. J. Gregoire, R. F. Ivanovic, K. Izumi, A. N. LeGrande, F. Lhardy, G. Lohmann, P. A. Morozova, R. Ohgaito, A. Paul, W. R. Peltier, C. J. Poulsen, A. Quiquet, D. M. Roche, X. Shi, J. E. Tierney, P. J. Valdes, E. Volodin, and J. Zhu, Clim. Past 17, 1065–1089 (2021).

    Article  Google Scholar 

  15. V. V. Kalmykov, R. A. Ibrayev, M. N. Kaurkin, and K. V. Ushakov, Geosci. Model Dev. 11 (10), 3983–3997 (2018).

    Article  Google Scholar 

  16. A. Kalugin and P. Morozova, Climate 11 (2), 36 (2023).

    Article  Google Scholar 

  17. K. V. Ushakov and R. A. Ibrayev, Russ. J. Earth. Sci. 18, ES1004 (2018).

  18. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Y. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, N. G. Iakovlev, A. A. Shestakova, and S. V. Emelina, Russ. J. Num. Anal. M 33, 367–374 (2018).

    Article  Google Scholar 

  19. T. A. Yanina, V. Sorokin, Yu. Bezrodnykh, and B. Romanyuk, Quat. Int. 465 (Pt. A), 130–141 (2018).

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 19-17-00215, modeling of CS WB components; grant no. 23-62-10043, INMCM4.8 simulations and data processesing) and the State Assignment (project no. FMWS-2024-0001, analysis of CS WB components and climate data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Morozova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, P.A., Ushakov, K.V., Semenov, V.A. et al. Water Balance of the Caspian Sea in the Last Glacial Maximum and Pre-Industrial Conditions Based on the Experiments with the INMIO-CICE General Sea Circulation Model. Dokl. Earth Sc. 515, 675–679 (2024). https://doi.org/10.1134/S1028334X23603620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23603620

Keywords:

Navigation