Skip to main content
Log in

Prediction of the Impact of the Environmental State in the Area of a Copper–Nickel Plant Based on the Balanced Identification Technology

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Modeling of the dynamics of the nickel concentration in soils, water, and bottom sediments of lakes, caused by emissions into the atmosphere from the Pechenga Nickel Plant (Kola Peninsula) over the entire period of its operation, is considered. The technology of balanced identification, which makes it possible based on mathematical description of inhomogeneous geochemical processes occurring in ecosystems to combine heterogeneous experimental data and to develop a computer model with an optimal balance of complexity and closeness to the data, is used. The results including estimates of the retrospective state of the simulated objects and a forecast of their dynamics until 2030 are presented and discussed. According to model calculations, the intensity of Ni accumulation in the soil was 2.4 and it was twice as high as in bottom sediments during the periods of maximum deposition (1980–2005). According to the forecast model, after the shutdown of the plant, Ni accumulation in bottom sediments will begin to decrease and Ni will slowly leach from the soil with an intensity of 0.2 mg/(m2 yr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Strobl, J. Kollmann, and L. H. Teixeira, Ecosphere 10, e02930 (2019).

    Article  Google Scholar 

  2. T. I. Moiseenko, V. V. Megorskii, N. A. Gashkina, and L. P. Kudryavtseva, Water Resor. 37 (2), 194–204 (2010).

    Article  Google Scholar 

  3. J. O. Nriagu, H. K. T. Wong, G. Lawson, and P. Daniel, Sci. Total Environ. 223, 99–117 (1998).

    Article  Google Scholar 

  4. B. Kvaeven, M. J. Ulstein, and B. L. Skjelkvåle, Water Air Soil Pollut. 130, 775–780 (2001).

    Article  Google Scholar 

  5. B. L. Skjelkvale, T. Andersen, E. Fjeld, J. Mannio, A. Wilander, K. Johansson, J. P. Jensen, and T. Moiseenko, AMBIO 30, 2–10 (2001).

    Article  Google Scholar 

  6. S. Rognerud, S. A. Norton, and V. Dauvalter, NIVA-Report No. 522/93 (NIVA, Oslo, 1993).

  7. A. V. Sokolov and V. V. Voloshinov, Int. J. Open Inf. Technol. 6 (9), 33–41 (2018).

    Google Scholar 

  8. A. V. Sokolov and V. V. Voloshinov, Open Comput. Sci. 10, 283–295 (2020).

    Article  Google Scholar 

  9. G. M. Kashulina, Aerotechnogenic Transformation of Soils in Subarctic European Region (Kola Sci. Center Russ. Acad. Sci., Apatity, 2002), Part 1.

  10. Current State of Terrestrial Ecosystems in the Joint Norwegian, Russian and Finnish Border Area in Northern Fennoscandia. Working Papers of the Finnish Forest Research Institute 85, Ed. by J. Derome, T. Myking, and P.A. Aarrestad (Finnish Forest Res. Inst., Helsinki, 2008).

    Google Scholar 

  11. Scattered Elements in Boreal Forests, Ed. by A. S. Isaev (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  12. G. A. Evdokimova, N. P. Mozgova, and M. V. Ko-rneikova, Eurasian Soil Sci. 47 (5), 504–511 (2014).

    Article  Google Scholar 

  13. T. I. Moiseenko, N. A. Gashkina, M. I. Dinu, T. A. Kremleva, and V. Y. Khoroshavin, Water 12, 1659 (2020).

    Article  Google Scholar 

  14. N. A. Gashkina and T. I. Moiseenko, Geochem. Int. 54 (12), 1079 (2016).

    Article  Google Scholar 

  15. S. A. Norton, P. G. Appleby, V. Dauvalter, and T. S. Traaen, NIVA-Report No. 41/1996 (NIVA, Oslo, 1996).

  16. V. A. Dauval’ter, N. A. Kashulin, and D. B. Denisov, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, No. 9, 62–75 (2015).

    Google Scholar 

  17. R. Narendrula, K. K. Nkongolo, P. Beckett, and G. Spiers, Chem. Ecol. 29, 111–127 (2013).

    Article  Google Scholar 

  18. J. Gunn, W. Keller, J. Negusanti, R. Potvin, P. Beskett, and K. Winterhalder, Water Air Soil Pollut. 85, 1783–1788 (1995).

    Article  Google Scholar 

  19. A. E. Tropea, A. M. Paterson, W. Keller, and J. P. Smol, Water Air Soil Pollut. 210, 317–333 (2010).

    Article  Google Scholar 

  20. M. Schindler and B. S. Kamber, Appl. Geochem. 37, 102–116 (2013).

    Article  Google Scholar 

Download references

Funding

This work was performed using the equipment of the Center for Collective Use “Complex of Simulation and Data Processing for Mega-Science Facilities” at the National Research Center Kurchatov Institute, http://ckp.nrcki.ru/. The studies were carried out under a State Assignment of Vernadsky Institute of Geochemistry and Analytical Chemistry, project no. FMUS-2019-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sokolov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.V., Gashkina, N.A. & Moiseenko, T.I. Prediction of the Impact of the Environmental State in the Area of a Copper–Nickel Plant Based on the Balanced Identification Technology. Dokl. Earth Sc. 513, 1403–1410 (2023). https://doi.org/10.1134/S1028334X23601918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23601918

Keywords:

Navigation