Skip to main content
Log in

Relics of Deep Alkali–Carbonate Melt in the Mantle Xenolith from the Komsomolskaya–Magnitnaya Kimberlite Pipe (Upper Muna Field, Yakutia)

  • PETROLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The results of study secondary crystallized melt inclusions in olivine of a sheared peridotite xenolith from the Komsomolskaya–Magnitnaya kimberlite pipe (Upper Muna field, Yakutia) are reported. Monticellite, phlogopite, tetraferriphlogopite KMg3(Fe3+)Si3O10(F,Cl,OH), apatite, aphthitalite K3Na(SO4)2, burkeite Na6CO3(SO4)2, and carbonates, namely calcite, nyerereite (Na,K)2Ca(CO3)2, shortite Na2Ca2(CO3)3, and eitelite Na2Mg(CO3)2, were detected among the daughter minerals of the melt inclusions by the method of confocal Raman spectroscopy. The abundance of alkali carbonates in the inclusions indicates the alkali–carbonate composition of the melt. Previously, identical inclusions of alkali–carbonate melt were reported in olivine of sheared peridotites from the Udachnaya pipe (Daldyn field). Melt inclusions in sheared peridotites are the relics of a crystallized kimberlite melt that penetrated into peridotites either during the transport of xenoliths to the surface or directly in the mantle shortly prior to the entrapment of xenoliths by the kimberlite magma. If the second scenario took place, the finds of alkali–carbonate melt inclusions in sheared peridotites carried from different mantle depths in the Udachnaya and Komsomolskaya–Magnitnaya kimberlite pipes indicate a large-scale metasomatic alteration of the lithospheric mantle of the Siberian Craton by alkaline-carbonate melts, which preceded the kimberlite magmatism. However, regardless of which of the two models proposed above is correct, the results reported here support the alkali–carbonate composition of primary kimberlite melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Schiano and R. Clocchiatti, Nature 368 (6472), 621–624 (1994).

    Article  Google Scholar 

  2. M.-L. Frezzotti, Lithos 55 (1–4), 273–299 (2001).

    Article  Google Scholar 

  3. A. V. Golovin and V. V. Sharygin, Russ. Geol. Geophys. 48 (10), 811–824 (2007).

  4. D. A. Zedgenizov, A. L. Ragozin, V. S. Shatsky, and W. L. Griffin, Contrib. Mineral. Petrol. 173, 84 (2018).

    Article  Google Scholar 

  5. A. V. Golovin, I. S. Sharygin, and A. V. Korsakov, Chem. Geol. 455, 357–375 (2017).

    Article  Google Scholar 

  6. A. V. Golovin, I. S. Sharygin, A. V. Korsakov, V.  S.  Kamenetsky, and G. M. Yaxley, Chem. Geol. 483, 261–274 (2018).

    Article  Google Scholar 

  7. A. V. Golovin, I. S. Sharygin, A. V. Korsakov, V. S. Kamenetsky, and A. Abersteiner, J. Raman Spectrosc. 51, 1849–1867 (2020).

    Article  Google Scholar 

  8. A. M. Dymshits, I. S. Sharygin, V. G. Malkovets, I. V. Yakovlev, A. A. Gibsher, T. A. Alifirova, S. S. Vorobei, S. V. Potapov, and V. K. Garanin, Minerals 10, 549 (2020).

    Article  Google Scholar 

  9. G. G. Lemmlein, Crystals: Morphology and Genesis (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. E. Roedder, Fluid Inclusions (Mineral. Soc. Am., 1984).

  11. I. S. Sharygin, A. V. Golovin, A. V. Korsakov, and N. P. Pokhilenko, Eur. J. Mineral. 25 (5), 825–834 (2013).

    Article  Google Scholar 

  12. I. S. Sharygin, K. D. Litasov, A. Shatskiy, O. G. Safonov, A. V. Golovin, E. Ohtani, and N. P. Pokhilenko, Chem. Geol. 455, 44–56 (2017).

    Article  Google Scholar 

  13. J. K. Russell, L. A. Porritt, Y. Lavallee, and D. B. Dingwell, Nature 481, 352–356 (2012).

    Article  Google Scholar 

  14. R. S. Stone and R. W. Luth, Contrib. Mineral. Petrol. 171, 63 (2016).

    Article  Google Scholar 

  15. A. Shatskiy, K. Litasov, I. Sharygin, and E. Ohtani, Gondwana Res. 45, 208–227 (2017).

    Article  Google Scholar 

  16. V. S. Kamenetsky, M. B. Kamenetsky, A. V. Golovin, V. V. Sharygin, and R. Maas, Lithos 152, 173–186 (2012).

    Article  Google Scholar 

  17. V. S. Kamenetsky, A. V. Golovin, R. Maas, A. Giuliani, M. B. Kamenetsky, and Y. Weiss, Earth-Sci. Rev. 139, 145–167 (2014).

    Article  Google Scholar 

  18. M. G. Kopylova, M. Gaudet, S. I. Kostrovitsky, A. G. Polozov, and D. A. Yakovlev, J. Volcanol. Geotherm. Res. 327, 116–134 (2016).

    Article  Google Scholar 

  19. I. S. Sharygin, A. V. Golovin, and N. P. Pokhilenko, Dokl. Earth Sci. 436 (6), 301–308 (2011).

    Article  Google Scholar 

  20. A. G. Polozov, S. S. Sukhov, M. A. Gornova, and S. N. Grishina, in Proc. Int. Kimberlite Conf. (Frankfurt, 2008), Vol. 9. https://doi.org/10.29173/ikc3481.

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research, project no. 20-35-70058, as well as was supported by the state assignment projects of the Institute of the Earth’s Crust and Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Sharygin.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharygin, I.S., Golovin, A.V., Dymshits, A.M. et al. Relics of Deep Alkali–Carbonate Melt in the Mantle Xenolith from the Komsomolskaya–Magnitnaya Kimberlite Pipe (Upper Muna Field, Yakutia). Dokl. Earth Sc. 500, 842–847 (2021). https://doi.org/10.1134/S1028334X21100147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21100147

Keywords:

Navigation