Skip to main content

Estimation of the Impact of Gravity Heterogeneities on the Heat Regime of the Boundary Layer of the Atmosphere

Abstract

The heterogeneities of the gravity field (HGF) deform the fields of air pressure, density, and temperature and affect the temperature regime of the boundary layer of the atmosphere, as well as the heat exchange between the air and the underlying surface. This work considers a stationary analytical model intended for estimation of the amplitudes of these effects, which resulted in analytical equations for profiles of temperature disturbances and amplitudes of deviations of the vertical heat fluxes on the surfaces. In addition to the amplitudes of the HGF, the latter most strongly depend on the ambient background stratification. In highly anomalous regions, the amplitudes of deviations of heat fluxes can reach and exceed 1 W/m2, which gives grounds to take into account the HGF in climate calculations and numerical models of the atmosphere.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1

    L. Kh. Ingel’ and A. A. Makosko, Izv., Atmos. Ocean. Phys. 54 (6), 536–542 (2018). https://doi.org/10.1134/S0001433818060087

    Article  Google Scholar 

  2. 2

    L. Kh. Ingel’ and А. A. Makosko, Geophys. Astrophys. Fluid Dyn. 115 (1), 35–43 (2021). https://doi.org/10.1080/03091929.2020.1762080

    Article  Google Scholar 

  3. 3

    N. E. Kochin, in Coll. Sci. Works (Izd. USSR Acad. Sci., Moscow, 1949), Vol. 1 [in Russian].

    Google Scholar 

  4. 4

    L. Kh. Ingel’ and A. A. Makosko, Vychisl. Mekh. Sploshn. Sred 13 (3), 288–297 (2020). https://doi.org/10.7242/1999-6691/2020.13.3.23

    Article  Google Scholar 

  5. 5

    S. S. Lappo, S. K. Gulev, and A. E. Rozhdestvenskii, Large-Scale Heat Interaction in Ocean-Atmosphere System and Energy Active Areas of the World Ocean (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  6. 6

    I. I. Ippolitov, M. V. Kabanov, S. V. Loginov, et al., Opt. Atmos. Okeana 24 (1), 22–29 (2011).

    Google Scholar 

  7. 7

    V. F. Dubravin, M. V. Kapustina, and Zh. I. Stont, Izv. Russ. Geogr. O-va 151 (4), 15–26 (2019). https://doi.org/10.31857/S0869-6071151415-26

    Article  Google Scholar 

  8. 8

    A. A. Makosko and B. D. Panin, Atmosphere Dynamic in Inhomogeneous Gravity Field (Russ. State Hydrometeorol. Univ., St. Petersburg, 2002) [in Russian].

    Google Scholar 

  9. 9

    Proc. IPCC Experts Meeting 2007 (Noordwijkerhout, Sept. 19–21, 2007). https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios-ru.pdf.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Makosko.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ingel, L.K., Makosko, A.A. Estimation of the Impact of Gravity Heterogeneities on the Heat Regime of the Boundary Layer of the Atmosphere. Dokl. Earth Sc. 500, 777–780 (2021). https://doi.org/10.1134/S1028334X21090117

Download citation