Turbulent Fluxes of the Dust Aerosol on the Desertified Area

Abstract—

Vertical turbulent dust aerosol fluxes are determined on the basis of measurements of fluctuations of the content of aerosol particles and the vertical component of the wind velocity for a desertified territory of Astrakhan oblast. The normalized flux or the uplift velocity of the dust aerosol reached 5 cm/s. It is found that the vertical turbulent aerosol flux is significantly affected by convective-related variations in the horizontal and vertical components of the wind velocity. It is shown that the daily variability of the uplift velocity of the aerosol agrees with that of the turbulent heat flux and that the mass dust aerosol flux is correlated with a maximum particle size of ~1.5 µm.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    G. I. Gorchakov, B. M. Koprov, and K. A. Shukurov, Izv., Atmos. Ocean. Phys. 38 (Suppl. 1), 138–147 (2002).

    Google Scholar 

  2. 2

    G. I. Gorchakov and K. A. Shukurov, Izv., Atmos. Ocean. Phys. 39 (1), 75–87 (2003).

    Google Scholar 

  3. 3

    Y. E. Stout and T. M. Zobeck, Sedimentology 44 (5), 959–970 (1997).

    Article  Google Scholar 

  4. 4

    R. G. D. Davidson-Arnott and B. O. Bauer, Geomorphology 105, 117–126 (2009).

    Article  Google Scholar 

  5. 5

    D. Liu, M. Ishizuka, M. Mikami, and Y. Shao, Atmos. Chem. Phys. 18, 7595–7606 (2008).

    Article  Google Scholar 

  6. 6

    R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  7. 7

    Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  8. 8

    G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, et al., Dokl. Earth Sci. 452 (2), 1067–1074 (2013).

    Article  Google Scholar 

  9. 9

    A. V. Karpov, Opt. Atmos. Okeana 21 (10), 844–849 (2008).

    Google Scholar 

  10. 10

    D. V. Buntov, R. A. Gushchin, and O. I. Datsenko, Atmos. Oceanic Opt. 31 (5), 548–551 (2018).

    Article  Google Scholar 

  11. 11

    E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, Dokl. Earth Sci. 426 (4), 652–658 (2009).

    Article  Google Scholar 

  12. 12

    E. B. Gledzer, I. G. Granberg, and O. G. Chkhetiani, Izv., Atmos. Ocean. Phys. 46 (1), 29–41 (2010).

    Article  Google Scholar 

  13. 13

    G. Fratini et al., Atmos. Chem. Phys. 7, 2839–2854 (2007).

    Article  Google Scholar 

  14. 14

    M. Klose and Y. Shao, Atmos. Chem. Phys. 12, 7309–7320 (2012).

    Article  Google Scholar 

  15. 15

    G. I. Gorchakov et al., Atmos. Oceanic Opt. 33 (10), 198–205 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.S. Golitsyn for fruitful advice and O.G. Chkhetiani for discussion of the results.

Funding

This work was supported by the Russian Science Foundation, project no. 20-17-00214.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Karpov, A.V. & Gushchin, R.A. Turbulent Fluxes of the Dust Aerosol on the Desertified Area. Dokl. Earth Sc. 494, 799–802 (2020). https://doi.org/10.1134/S1028334X20100049

Download citation