Formation Parameters of High-Pressure Minerals in the Dhofar 717 and 864 Chondrite Meteorites


This paper presents the results of a Raman spectroscopic study of shock melt veins in L6 chondritic meteorites Dhofar 717 and 864, and conclusions about the P–T parameters recorded in these meteorites after the impact event. The primary minerals of the host chondrite include olivine, orthopyroxene, clinopyroxene, plagioclase, chromite, phosphates, troilite, and kamasite. Shock melt veins up to 1 cm thick contain fragments of the high-pressure minerals ringwoodite, wadsleyite, majorite, akimotoite, jadeite, lingunite, and tuite and quenched melt consisting of majorite, ringwoodite, troilite, and kamasite. The mineral associations of the Dhofar 717 and 864 chondrites indicate high peak PT parameters of the impact in the region of stability of majorite (>20 GPa and >2500 K) and bridgmanite (>25 GPa and >2500 K). The presence of lingunite also directly indicates a peak pressure in the area of stability of the bridgmanite.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    P. Gillet and A. El Goresy, Annu. Rev. Earth Planet. Sci. 41, 257–285 (2013).

    Article  Google Scholar 

  2. 2

    E. Ohtani, Y. Kimura, M. Kimura, T. Takata, T. Kondo, and T. Kubo, Earth Planet. Sci. Lett. 227, 505–515 (2004).

    Article  Google Scholar 

  3. 3

    N. Tomioka and M. Miyahara, Meteorit. Planet. Sci. 52, 2017–2039 (2017).

    Article  Google Scholar 

  4. 4

    K. Litasov, E. Ohtani, F. Langenhorst, H. Yurimoto, T. Kubo, and T. Kondo, Earth Planet. Sci. Lett. 211, 189–203 (2003).

    Article  Google Scholar 

  5. 5

    O. Tschauner, C. Ma, J. R. Beckett, C. Prescher, V. B. Prakapenka, and G. R. Rossman, Science 346, 1100–1102 (2014).

    Article  Google Scholar 

  6. 6

    M. Miyahara, E. Ohtani, S. Ozawa, M. Kimura, A. El Goresy, T. Sakai, T. Nagase, K. Hiraga, N. Hirao, and Y. Ohishi, Proc. Natl. Acad. Sci. U. S. A. 108, 5999–6003 (2011).

    Article  Google Scholar 

  7. 7

    N. Tomioka and K. Fujino, Science 277, 1084–1086 (1997).

    Article  Google Scholar 

  8. 8

    L. Feng, M. Miyahara, T. Nagase, E. Ohtani, S. Hu, A. El Goresy, and Y. Lin, Am. Mineral. 102, 1254–1262 (2017).

    Article  Google Scholar 

  9. 9

    T. G. Sharp and P. S. DeCarli, Meteorites and the Early Solar System II (Univ. of Arizona Press, Houston, TX, 2006), pp. 653–677.

    Google Scholar 

  10. 10

    D. Stoffler, K. Keil, and E. R. D. Scott, Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  Google Scholar 

  11. 11

    E. A. Kozlov and L. V. Sazonova, Petrology 20 (4), 301–316 (2012).

    Article  Google Scholar 

  12. 12

    J. Zhang and C. Herzberg, J. Geophys. Res. 99, 17729–17742 (1994).

    Article  Google Scholar 

  13. 13

    M. Akaogi, E. Ito, and A. Navrotsky, J. Geophys. Res. 94, 15671–15685 (1989).

    Article  Google Scholar 

  14. 14

    T. Gasparik, Phase Diagrams for Geoscientists. An Atlas of the Earth’s Interior (Springer, New York, 2003).

    Book  Google Scholar 

  15. 15

    Y. Zhou, T. Irifune, H. Ohfuji, T. Shinmei, and W. Du, Phys. Chem. Miner. 44, 33–42 (2017).

    Article  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research, project no. 17-05-00851.

Author information



Corresponding author

Correspondence to K. D. Litasov.

Additional information

Translated by M.A. Gannibal

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Litasov, K.D., Badyukov, D.D. & Pokhilenko, N.P. Formation Parameters of High-Pressure Minerals in the Dhofar 717 and 864 Chondrite Meteorites. Dokl. Earth Sc. 485, 327–330 (2019).

Download citation