Doklady Earth Sciences

, Volume 484, Issue 1, pp 109–113 | Cite as

Numerical Estimations of Desalinated Seawater Modification Using Waters of the Laptev Sea Shelf as an Example

  • E. O. DubininaEmail author
  • A. Yu. Miroshnikov
  • S. A. Kossova
  • M. V. Flint


Continental runoff, inflowing to Arctic waters, is estimated by the use of isotope and hydrophysical tracers. This is quite a complicated task, because desalinated waters freeze. The existing model of three-component mixing [1] deals only with the input of melted sea ice, thus limiting its utility in zones where ice is intensely formed. A new mixing-modification model is proposed. The effect of the model is illustrated by data from the Laptev Sea shelf, which is affected by the Lena River runoff. Modification of these waters is manifested by an excessive increase in salinity in relation to the oxygen isotope composition, which is determined by the mixing of waters of the Lena River with waters of the Arctic basin. The model considers the water modification owing to the formation and removal of ice.



This work was supported by the Russian Foundation for Basic Research (project no. 18-17-00089), which also supported the field research (project no. 14-50-00095).


  1. 1.
    H. G. Ostlund and G. Hut, J. Geophys. Res. 89, 6373–6381 (1984).CrossRefGoogle Scholar
  2. 2.
    B. Ekwurzel, P. Schlosser, R. Mortlock, and R. Fairbanks, J. Geophys. Res. 106 (C5), 9075–9092 (2001).CrossRefGoogle Scholar
  3. 3.
    E. O. Dubinina, S. A. Kossova, A. Yu. Miroshnikov, and N. M. Kokryatskaya, Geochem. Int. 55 (1)1, 1022–1031 (2017).CrossRefGoogle Scholar
  4. 4.
    D. Bauch, J. Hölemann, S. Willmes, M. Gröger, A. Novikhin, A. Nikulina, H. Kassens, and L. Timokhov, J. Geophys. Res. 115, C11008 (2010).CrossRefGoogle Scholar
  5. 5.
    D. Bauch, J. Hölemann, A. Nikitina, C. Wegner, M. Janout, L. A. Timokhov, and H. Kassens, J. Geophys. Res. 118, 550–561 (2013).CrossRefGoogle Scholar
  6. 6.
    D. Bauch, E. Cherniavskaya, and L. Timokhov, Deep-Sea Res. 1 (115), 188–198 (2016).CrossRefGoogle Scholar
  7. 7.
    M. A. Johnson and I. V. Polyakov, Geophys. Res. Lett. 28 (10), 2017–2020 (2001).CrossRefGoogle Scholar
  8. 8.
    D. Bauch and E. Cherniavskaya, J. Geophys. Res.: Oceans 123 (2018).
  9. 9.
    D. Bauch, S. Torres-Valdes, I. Polyakov, A. Novikhin, I. Dmitrenko, J. McKay, and A. Mix, Ocean Sci. 10, 141–154 (2014).CrossRefGoogle Scholar
  10. 10.
    R. D. Frew, P. F. Dennis, K. J. Heywood, et al., Deep-Sea Res. 47, 2265–2286 (2000).CrossRefGoogle Scholar
  11. 11.
    D. Bauch, J. A. Hölemann, I. A. Dmitrenko, et al., J. Geophys. Res. 117, C00G12 (2012).CrossRefGoogle Scholar
  12. 12.
    B. Thibodeau, D. Bauch, H. Kassens, and L. A. Timokhov, Geophys. Res. Lett. 41, 7237–7244 (2014).CrossRefGoogle Scholar
  13. 13.
    H. Craig and L. Gordon, in Stable Isotopes in Oceanographic Studies and Paleotemperatures (Spoleto, 1965), pp. 9–130.Google Scholar
  14. 14.
    G. F. N. Cox and W. F. Weeks, J. Glaciol. 13 (67), 109–120 (1974).CrossRefGoogle Scholar
  15. 15.
    M. Lehmann and U. Siegenthaler, J. Glaciol. 37, 23–26 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. O. Dubinina
    • 1
    Email author
  • A. Yu. Miroshnikov
    • 1
  • S. A. Kossova
    • 1
  • M. V. Flint
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations