Doklady Earth Sciences

, Volume 480, Issue 1, pp 631–636 | Cite as

Matrices for Isolation of Actinide Wastes in a Deep Well Repository

  • S. V. Yudintsev
  • M. S. Nikolskii
  • B. S. Nikonov
  • V. I. Malkovskii


Radioactive nuclear waste containing long-lived actinides (Np, Pu, Am, and Cm) is proposed to be placed in well repositories with a depth of up to 5 km. The optimum form of such wastes is crystalline phases that are capacious in relation to radionuclides and stable in mineralized groundwater (brines) heated due to heat generation in the waste and due to the geothermal gradient. In order to find possible phases, we have studied samples of the Nd–Ti–Zr–O system, where Nd3+ acts as an imitator of the rare-earth-actinide fraction of highly radioactive wastes of reprocessed nuclear fuel. The samples were obtained by induction melting in a cold crucible with subsequent melt crystallization. It has been concluded that the Nd2–x(Ti,Zr)2O7–1.5х and Nd4Ti9O24 phases are promising as potential matrices for these wastes. The structure of NdO1.5–TiO2–ZrO2 system at a high temperature has been revealed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. P. Laverov, V. I. Velichkin, B. I. Omel’yanenko, S. V. Yudintsev, V. A. Petrov, and A. V. Bychkov, Isolation of Waste Nuclear Materials: Geological and Geochemical Foundations (Schmidt Inst. Phys. Earth Russ. Acad. Sci., Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    S. V. Yudintsev, A. M. Pervukhina, A. V. Mokhov, V. I. Malkovsky, and S. V. Stefanovsky, Dokl. Earth Sci. 473 (2), 427–432 (2017).CrossRefGoogle Scholar
  3. 3.
    S. V. Yudintsev, E. V. Aleksandrova, T. S. Livshits, V. I. Mal’kovskii, Ya. V. Bychkova, B. R. Tagirov, Dokl. Earth Sci. 458 (2), 1281–1284 (2014).CrossRefGoogle Scholar
  4. 4.
    S. V. Stefanovsky and S. V. Yudintsev, Russ. Chem. Rev. 85 (9), 962–994 (2016).CrossRefGoogle Scholar
  5. 5.
    A. E. Ringwood, Mineral. Mag. 49, 159–176 (1985).CrossRefGoogle Scholar
  6. 6.
    F. G. F. Gibb, K. P. Travis, and K. W. Hesketh, Mineral. Mag. 76, 3003–3017 (2012).CrossRefGoogle Scholar
  7. 7.
    E. A. Bates, M. J. Driscoll, R. K. Lester, and B. W. Arnold, Energy Policy 74, 186–189 (2014).CrossRefGoogle Scholar
  8. 8.
    A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson, and A. Major, Nature 278, 219–223 (1979).CrossRefGoogle Scholar
  9. 9.
    S. S. Shoup, C. E. Bamberger, J. L. Tyree, and L. M. Anovitz, J. Solid State Chem. 127, 231–239 (1996).CrossRefGoogle Scholar
  10. 10.
    F. A. Caporuscio, B. L. Scott, H. Xu, and R. K. Feller, Nucl. Eng. Des. 266, 180–185 (2014).CrossRefGoogle Scholar
  11. 11.
    O. V. Kharitonov, V. V. Milyutin, L. A. Firsova, E. A. Kozlitin, M. V. Logunov, Yu. A. Voroshilov, N. G. Yakovlev, and S. V. Fadeev, Vopr. Radiats. Bezop., No. 3, 52–60 (2016).Google Scholar
  12. 12.
    S. V. Yudintsev, S. V. Stefanovskii, M. Yu. Kalenova, B. S. Nikonov, M. S. Nikolskii, A. M. Koshcheev, and A. S. Shchepin, Radiokhimiya 57 (3), 272–282 (2015).Google Scholar
  13. 13.
    S. S. Shoup, C. E. Bamberger, T. J. Haverlock, and J. R. Peterson, J. Nucl. Mater. 240, 112–117 (1997).CrossRefGoogle Scholar
  14. 14.
    PDF-2 Database. International Centre for Diffraction Data (International Centre for Diffraction Data, Newtown Square, PA, 1998).Google Scholar
  15. 15.
    M. W. Chu, M. Caldes, O. Joubert, M. Ganne, Y. Piffard, and L. Brohan, Solid State Sci. 4, 167–173 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Yudintsev
    • 1
    • 2
  • M. S. Nikolskii
    • 1
  • B. S. Nikonov
    • 1
  • V. I. Malkovskii
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations