Advertisement

Doklady Earth Sciences

, Volume 480, Issue 1, pp 602–606 | Cite as

Estimating the Contributions of the Atlantic Multidecadal Oscillation and Variations in the Atmospheric Concentration of Greenhouse Gases to Surface Air Temperature Trends from Observations

Geophysics
  • 2 Downloads

Abstract

We have quantitatively estimated the contributions of anthropogenic forcing characterized by variations in the atmospheric content of greenhouse gases and of natural variability characterized by the Atlantic Multidecadal Oscillation to the trends of global surface air temperature from observations since the middle of the nineteenth century on the basis of three-component autoregressive models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner (Cambridge Univ. Press, Cambridge, 2013).Google Scholar
  2. 2.
    I. I. Mokhov, A. A. Karpenko, and P. A. Stott, Dokl. Earth Sci. 406 (1), 158–162 (2006).CrossRefGoogle Scholar
  3. 3.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, Dokl. Earth Sci. 411 (8), 1327–1330 (2006).CrossRefGoogle Scholar
  4. 4.
    I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, and A. A. Karpenko, Cosmic Res. 46 (4), 354–357 (2008).CrossRefGoogle Scholar
  5. 5.
    J. L. Lean and D. H. Rind, Geophys. Res. Lett. 35, L18701 (2008).CrossRefGoogle Scholar
  6. 6.
    J. L. Lean and D. H. Rind, Geophys. Res. Lett. 36, L15708 (2009).CrossRefGoogle Scholar
  7. 7.
    G. V. Gruza and E. Ya. Ran’kova, Observed and Expected Climatic Changes in the Russian Federation: Atmospheric Temperature (All-Russ. Res. Inst. Hydrometeorol. Inform.—International Data Center, Obninsk, 2012) [in Russian].Google Scholar
  8. 8.
    I. I. Mokhov, D. A. Smirnov, and A. A. Karpenko, Dokl. Earth Sci. 443 (1), 381–387 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Imbers, A. Lopez, C. Huntingford, and M. R. Allen, J. Geophys. Res.: Atmos. 118, 3192–3199 (2013).Google Scholar
  10. 10.
    D. I. Stern and R. K. Kaufmann, Clim. Change 122, 257–269 (2014).CrossRefGoogle Scholar
  11. 11.
    I. I. Mokhov, Herald Russ. Acad. Sci. 85 (3), 265–271 (2015).CrossRefGoogle Scholar
  12. 12.
    I. I. Mokhov and D. A. Smirnov, Dokl. Earth Sci. 467 (2), 384–388 (2016).CrossRefGoogle Scholar
  13. 13.
    I. I. Mokhov, Izv., Atmos. Ocean. Phys. 53 (5), 550–563 (2017).CrossRefGoogle Scholar
  14. 14.
    I. I. Mokhov and D. A. Smirnov, Dokl. Earth Sci. 427 (1), 798–803 (2009).CrossRefGoogle Scholar
  15. 15.
    D. A. Smirnov and I. I. Mokhov, Phys. Rev. E 80, 016208 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Saratov Branch of Kotel’nikov Institute of RadioEngineering and ElectronicsRussian Academy of SciencesSaratovRussia
  4. 4.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations