Doklady Earth Sciences

, Volume 480, Issue 1, pp 555–558 | Cite as

A Neoarchean–Proterozoic Supercontinent (~2.8–0.9 Ga): An Alternative to the Model of Supercontinent Cycles

Geology
  • 1 Downloads

Abstract

The model of supercontinent cycles is revisited on the basis of reevaluation of existing ideas on the geodynamics and tectonics of granulite gneiss belts and areals. Granulite-gneiss belts and areals of a regional scale correspond to mantle–plume (superplume) activity and form the major components of intracontinental orogens. The evolution of geodynamic settings of the Earth’s crust origin can be imagined as a “spiral sequence”: (1) interaction of mantle plumes and “embryonic” microplate tectonics during the Paleo- Mesoarchean (~3.80–2.75 Ga); (2) plume-tectonics and local plume-driven plate-tectonics within supercontinent during Neoarchean and Proterozoic (~2.75–0.85 Ga); (3) plate tectonics in the Phanerozoic along with a reduced role of mantle plumes starting from ~0.85 Ga.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. W. Rogers and M. Santosh, Continents and Supercontinents (Oxford Univ. Press, Oxford, 2004).Google Scholar
  2. 2.
    K. C. Condie, Earth as Evolving Planetary System (Elsevier, Amsterdam, 2005).Google Scholar
  3. 3.
    K. C. Condie and R. C. Aster, Precambrian Res. 180, 227–236 (2010).CrossRefGoogle Scholar
  4. 4.
    M. V. Mints, Geotectonics 48 (6), 498–524 (2014).CrossRefGoogle Scholar
  5. 5.
    M. V. Mints, K. A. Dokukina, A. N. Konilov, et al., Geol. Soc. Am., Spec. Pap. 510, 433 (2015).Google Scholar
  6. 6.
    M. Brown, Geol. Soc. London, Spec. Publ. 318, 37–74 (2009).CrossRefGoogle Scholar
  7. 7.
    J. A. Percival, R. A. Stern, J. K. Mortensen, et al., Geology 22, 839–842 (1994).CrossRefGoogle Scholar
  8. 8.
    D. D. Van Reenen, R. Boshoff, C. A. Smit, et al., Gondwana Res. 14, 644–662 (2008).CrossRefGoogle Scholar
  9. 9.
    M. E. J. Schultz, T. Chacko, L. M. Heaman, et al., Geology 35 (8), 707–710 (2007).CrossRefGoogle Scholar
  10. 10.
    S. K. De, T. Chacko, R. A. Creaser, et al., Precambrian Res. 102, 221–249 (2000).CrossRefGoogle Scholar
  11. 11.
    C. M. M. Leite, J. S. F. Barbosa, P. Goncalves, et al., Gondwana Res. 15, 49–70 (2009).CrossRefGoogle Scholar
  12. 12.
    J. H. Guo, M. Sun, F. K. Chen, et al., J. Asian Earth Sci. 24, 629–642 (2005).CrossRefGoogle Scholar
  13. 13.
    T. Rivers, Geol. Soc. London, Spec. Publ. 327, 405–444 (2009).CrossRefGoogle Scholar
  14. 14.
    R. H. Smithies, H. M. Howard, P. M. Evins, et al., J. Petrol. 52, 931–958 (2011).CrossRefGoogle Scholar
  15. 15.
    J. D. A. Piper, Int. Geol. Rev. 57 (11–12), 1389–1417 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of ScienceMoscowRussia

Personalised recommendations