Doklady Earth Sciences

, Volume 479, Issue 2, pp 524–528 | Cite as

The Influence of Sodium and Potassium Chlorides on Phase Ratios in the Eclogite–CaCO3–H2O + CO2 System at 4 GPa and 1200–1300°C

  • N. S. Gorbachev
  • Yu. B. Shapovalov
  • A. V. Kostyuk
Geochemistry
  • 5 Downloads

Abstract

To characterize the influence of alkaline metal chlorides on the phase ratios under melting of upper mantle eclogites, the eclogite–CaCO3–NaCl–KCl system with Н2О + СО2-fluid was studied in the experiments under 4 GPa and 1200–1300°C. A low difference in temperatures (<100°C) was registered between the eclogite solidus and liquidus (>1200 and <1300°C, respectively), which is characteristic for the near-eutectic compositions. The phase proportions were peculiar for the absence of any silicate melt over the entire temperature range considered. The carbonate melt coexisted with clinopyroxene and garnet within 1200–1250°C, whereas a carbonate melt exclusively occurred under above-liquidus conditions at 1300°C. The melt quenching resulted in the formation of a multiphase fine-grained mixture of Ca, Na, and K carbonates and chlorides containing microinclusions of clinopyroxene and garnet. The occurrence of a high-calcium carbonate melt in Cl-containing eclogite systems might play a significant role in the mantle metasomatism of subduction zones characterized by the water–alkaline–chloride type of fluids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Ukhanov, I. D. Ryabchikov, and A. D. Khar’kiv, Lithosphere Mantle of Yakut Kimberlite Province (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    J. M. Pyle and S. E. Haggerty, Geochim. Cosmochim. Acta 62, 1207–1231 (1998).CrossRefGoogle Scholar
  3. 3.
    Y. Weiss, R. Kessel, W. L. Griffin, et al., Lithos 112, 660–674 (2009).CrossRefGoogle Scholar
  4. 4.
    O. A. Bogatikov, V. I. Kovalenko, and E. V. Sharkov, Magmatism, Tectonics, Geodynamics of the Earth (Nauka, Moscow, 2010), p. 605 [in Russian].Google Scholar
  5. 5.
    E. Kiseeva, G. M. Yaksley, et al., J. Petrol. 53 (4), 727–759 (2012).CrossRefGoogle Scholar
  6. 6.
    N. S. Gorbachev, A. V. Kostyuk, and Yu. B. Shapovalov, Dokl. Earth Sci. 464 (2), 1018–1022 (2015).CrossRefGoogle Scholar
  7. 7.
    O. G. Safonov, L. L. Perchuk, and Y. A. Litvin, Earth Planet. Sci. Lett. 253, 112–128 (2007).CrossRefGoogle Scholar
  8. 8.
    O. G. Safonov, L. L. Perchuk, V. O. Yapaskurt, et al., Dokl. Earth Sci. 424 (1), 142–146 (2009).CrossRefGoogle Scholar
  9. 9.
    K. D. Litasov, I. S. Sharygin, A. F. Shatskiy, et al., Dokl. Earth Sci. 435 (2), 1641–1646 (2010).CrossRefGoogle Scholar
  10. 10.
    K. D. Litasov, O. G. Safonov, and E. Ohtani, Geology 38, 1131–1134 (2010).CrossRefGoogle Scholar
  11. 11.
    N. S. Gorbachev, Fluid and Magmatic Interaction in Sulphide-Silicate Systems (Nauka, Moscow, 1989) [in Russian].Google Scholar
  12. 12.
    Yu. A. Litvin, Physical and Chemical Investigations for Melting of the Earth’s Deep Matter (Nauka, Moscow, 1991) [in Russian].Google Scholar
  13. 13.
    N. V. Sobolev, Deep Inclusions in Kimberlites and Problem on Composition of Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  14. 14.
    Minerals. Handbook. Phase Equilibria Diagrams (Nauka, Moscow, 1974), Iss. 1 [in Russian].Google Scholar
  15. 15.
    A. P. Jones, M. Genge, and L. Carmody, Rev. Mineral. Geochem. 75, 289–322 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. S. Gorbachev
    • 1
  • Yu. B. Shapovalov
    • 1
  • A. V. Kostyuk
    • 1
  1. 1.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations