Doklady Earth Sciences

, Volume 479, Issue 2, pp 491–494 | Cite as

An Empirical Model of the Gibbs Free Energy for Solutions of NaCl and CaCl2 of Arbitrary Concentration at Temperatures from 423.15 K to 623.15 K under Vapor Saturation Pressure

  • M. V. Ivanov
  • S. A. Bushmin
  • L. Y. Aranovich


An empirical model for the concentration dependence of the Gibbs free energy for solutions of chlorides of alkaline and alkaline earth metals in water is proposed. A simple analytical form of the Gibbs free energy makes it possible to obtain the equations of state for salt solutions that are equally accurate in the entire range of salt concentrations, from dilute solutions to solubility limits. The high accuracy of the thermodynamic description of solutions of high and intermediate concentration is ensured by the presence in the equation for the Gibbs free energy of two terms related to the Margules decomposition of the Gibbs free energy. Our form of the Gibbs free energy also contains a term that reproduces the thermodynamic behavior of solutions of electrolytes, which ensures high accuracy of the proposed model at low salt concentrations in the solution. Using the model, the equations of state for aqueous solutions of NaCl and CaCl2 at water vapor pressure in the temperature ranges of 423.15 K–573.15 K and 423.15 K–623.15 K were obtained, which corresponds to the parameters of ore-bearing solutions participating in the formation of low-temperature hydrothermal ore deposits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Bischoff, R. J. Rosenbauer, and R. O. Fournier, Geochim. Cosmochim. Acta 60, 7–16 (1996).CrossRefGoogle Scholar
  2. 2.
    L. Ya. Aranovich, I. V. Zakirov, N. G. Sretenskaya, et al., Geochem. Int. 48 (5), 446–455 (2010).CrossRefGoogle Scholar
  3. 3.
    L. Y. Aranovich and R. C. Newton, Contrib. Mineral. Petrol. 125, 200–212 (1996).CrossRefGoogle Scholar
  4. 4.
    N. S. Bortnikov, Geol. Ore Deposits 48, 1–22 (2006).CrossRefGoogle Scholar
  5. 5.
    M. V. Ivanov and S. A. Bushmin, Cornell Univ. Library, 2017. arXiv:1705.02901v2 [physics.chem-ph], pp. 1–26.Google Scholar
  6. 6.
    C. Liu and W. T. Lindsay, Jr., J. Solution Chem. 1, 45–69 (1972).CrossRefGoogle Scholar
  7. 7.
    K. S. Pitzer, J. C. Peiper, and R. H. Busey, J. Phys. Chem. Ref. Data 13, 1–102 (1984).CrossRefGoogle Scholar
  8. 8.
    D. G. Archer, J. Phys. Chem. Ref. Data 21, 793–829 (1992).CrossRefGoogle Scholar
  9. 9.
    R. Sun and J. Dubessy, Geochim. Cosmochim. Acta 88, 130–145 (2012).CrossRefGoogle Scholar
  10. 10.
    F. F. Hingerl, T. Wagner, D. A. Kulik, et al., Chem. Geol. 381, 78–93 (2014).CrossRefGoogle Scholar
  11. 11.
    K. S. Pitzer and C. S. Oakes, J. Chem. Eng. Data 39, 553–559 (1994).CrossRefGoogle Scholar
  12. 12.
    V. I. Zarembo, S. N. L’vov, and M. Yu. Matuzenko, Geokhimiya, No. 4, 610–614 (1980).Google Scholar
  13. 13.
    S. A. Wood, D. A. Crerar, S. L. Brantley, et al., Am. J. Sci. 284, 668–705 (1984).CrossRefGoogle Scholar
  14. 14.
    V. A. Ketsko, M. A. Urusova, and V. M. Valyashko, Zh. Neorg. Khim. 29, 2443–2445 (1984).Google Scholar
  15. 15.
    M. S. Gruszkiewicz and J. M. Simonson, J. Chem. Thermodyn. 37, 906–930 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Ivanov
    • 1
  • S. A. Bushmin
    • 1
  • L. Y. Aranovich
    • 2
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations