Doklady Earth Sciences

, Volume 479, Issue 2, pp 460–462 | Cite as

Transport and Crystallization of Noble Platinum in Supercritical C–O–H Fluid

  • F. A. Letnikov
  • T. G. Shumilova
  • V. Ya. Medvedev
  • L. A. Ivanova


Experimental data is provided for the transport of platinum in a supercritical C–O–H fluid system. The transfer of platinum in space with its condensation on the surface of native carbon (diamond and amorphous carbon) in the form of micro- and nanocrystals, shapeless particles, and filamentous formations is established for the first time. The dominant participation of platinum in the formation of carbon micro- and nanotubes is demonstrated. The results are important in modeling the formation of noble metal deposits with deep fluid carbon systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. I. Gurskaya, Black-Shale Type of Platinum Group Metals Metallization and Criteria for Its Predicting (Karpinsky Russ. Geol. Res. Inst., St. Petersburg, 2000) [in Russian].Google Scholar
  2. 2.
    D. A. Dodin, K. K. Zoloev, V. A. Koroteev, et al., A Carbonaceous Formation is a New Large Source of Platinum-Group Metals of the 21st Century (Geoinformmark, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    K. K. Zoloev and I. N. Novikov, Geological Survey and Evaluation of the Perspectives of Discovery of Noble- Metal Deposits (Au, Pt) in Carbonaceous Volcanogenic- Sedimentary Formations of the Sur’ya–Promysla Zone (Middle and Northern Urals) (Ural Geological Survey Expedition, Yekaterinburg, 2003) [in Russian].Google Scholar
  4. 4.
    P. F. Ivankin and N. I. Nazarova, The Method Studying Ore-Bearing Structures in Terrigenous Formations (Nedra, Moscow, 1988) [in Russian].Google Scholar
  5. 5.
    F. A. Letnikov, V. B. Savel’eva, Yu. V. Anikina, and M. M. Smagunova, Dokl. Earth Sci. A 347 (3), 509–512 (1996).Google Scholar
  6. 6.
    I. D. Ryabchikov and M. I. Novgorodova, Dokl. Akad. Nauk SSSR 258 (6), 1453–1456 (1981).Google Scholar
  7. 7.
    A. I. Khanchuk, L. P. Plyusnina, and V. P. Molchanov, Dokl. Earth Sci. 397 (6), 820–824 (2004).Google Scholar
  8. 8.
    V. N. Sazonov, V. A. Koroteev, V. N. Ogorodnikov, Yu. A. Polenov, A. Ya. Velikanov, Litosfera, No. 4, 70–92 (2011).Google Scholar
  9. 9.
    Ya. E. Yudovich, M. P. Ketris, and A. V. Merts, Geochemistry and Ore Genesis of Gold Ore Mineralization in Black Shales (Geonauka, Syktyvkar, 1990) [in Russian].Google Scholar
  10. 10.
    P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino, and E. E. Brock, AIChE J. 41, 1723–1778 (1995).CrossRefGoogle Scholar
  11. 11.
    Yu. E. Gorbatyi and G. V. Bondarenko, Sverkhkrit. Flyuidy: Teor. Prakt. 2 (2), 5–19 (2007).Google Scholar
  12. 12.
    L. A. Ivanova, T. G. Shumilova, V. Ya. Medvedev, M.V. Marchuk, S. I. Isaenko, and S. S. Shevchuk, Dokl. Earth Sci. 466 (2), 196–198 (2016).CrossRefGoogle Scholar
  13. 13.
    T. G. Shumilova, V. Ya. Medvedev, L. A. Ivanova, M. V. Marchuk, S. I. Isaenko, and S. S. Shevchuk, Pat. Appl. No. 2015157466, Russia (2015).Google Scholar
  14. 14.
    H. Ye, N. Naguib, Yu. Gogotsi, A. G. Yazicioglu, and C. M. Megaridis, Nanotechnology, No. 15, 232–236 (2004).CrossRefGoogle Scholar
  15. 15.
    J. Libera and Yu. Gogotsi, Carbon, No. 39, 1307–1318 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. A. Letnikov
    • 1
  • T. G. Shumilova
    • 2
  • V. Ya. Medvedev
    • 1
  • L. A. Ivanova
    • 1
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Institute of Geology, Komi Science Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations