Skip to main content

Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere

Abstract

The variability of zonal trends of surface air temperature for the period 1979–2012 is analyzed using ensemble simulations with a general atmospheric circulation model (AGCM) with identical prescribed conditions at the lower boundary of the atmosphere and different initial conditions. It is shown that the dependence of the variability of intra-ensemble zonal temperature trends on the variability of zonal fluctuations of temperature anomalies (associated with the internal variability of atmospheric circulation in the AGCM) is described quite well in terms of the stationary stochastic process model. In such a model, the dependence of the standard deviation of intra-ensemble trends can be approximated by a linear function of the standard deviation of temperature fluctuations, which agrees well with the AGCM results.

This is a preview of subscription content, access via your institution.

References

  1. R. V. Bekryaev, I. V. Polyakov, and V. A. Alexeev, J. Clim. 23 (14), 3888–3906 (2010).

    Article  Google Scholar 

  2. C. Deser, A. Phillips, V. Bourdette, and H. Teng, Clim. Dyn. 38, 527–546 (2012).

    Article  Google Scholar 

  3. A. Gelfan, V. A. Semenov, E. Gusev, Y. Motovilov, O. Nasonova, and I. Krylenko, Hydrol. Earth Syst. Sci. 19, 2737–2754 (2015). doi 10.5194/hess-19-2737-2015

    Article  Google Scholar 

  4. D. L. Hartmann, A. M. G. Klein Tank, M. Rusticucci, et al., in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, New York, 2013).

    Google Scholar 

  5. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes (Springer, New York, 1987).

    Book  Google Scholar 

  6. C. E. Leith, J. Appl. Meteorol. 12, 1066–1069 (1973).

    Article  Google Scholar 

  7. E. N. Lorenz, Meteorol. Monogr. 8 (30), 1–3 (1968).

    Google Scholar 

  8. N. A. Rayner, D. E. Parker, E. B. Horton, et al., J. Geophys. Res. 108 (D14), 4407 (2003). doi 10.1029/2002JD002670

    Article  Google Scholar 

  9. E. Roeckner, G. Bauml, and L. Bonaventure, The Atmospheric General Circulation Model ECHAM5, Part 1: Model Description, Report 349 (Max Planck Inst. Meteorol., Hamburg, 2003).

    Google Scholar 

  10. B. D. Santer, P. W. Thorne, L. Haimberger, et al., Int. J. Climatol. 28, 1703–1722 (2008).

    Article  Google Scholar 

  11. V. A. Semenov, M. Latif, J. H. Jungclaus, et al., Geophys. Res. Lett. 35 (11), (2008). doi 10.1029/2008gl033273

    Google Scholar 

  12. V. A. Semenov and M. Latif, Environ. Res. Lett. 10, 054020 (2015). doi 10.1088/1748-9326/10/5/054020

    Article  Google Scholar 

  13. D. W. J. Thompson, E. A. Barnes, C. Deser, et al., J. Clim. 48, 6433–6456 (2015).

    Google Scholar 

  14. M. Winton, A. Adcroft, S. V. M. Griffits, et al., J. Clim. 26, 231–246 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Semenov.

Additional information

Original Russian Text © P.F. Demchenko, V.A. Semenov, 2017, published in Doklady Akademii Nauk, 2017, Vol. 476, No. 3, pp. 339–342.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demchenko, P.F., Semenov, V.A. Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere. Dokl. Earth Sc. 476, 1105–1108 (2017). https://doi.org/10.1134/S1028334X17090239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X17090239