Doklady Earth Sciences

, Volume 476, Issue 1, pp 1105–1108 | Cite as

Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere

Geophysics
  • 19 Downloads

Abstract

The variability of zonal trends of surface air temperature for the period 1979–2012 is analyzed using ensemble simulations with a general atmospheric circulation model (AGCM) with identical prescribed conditions at the lower boundary of the atmosphere and different initial conditions. It is shown that the dependence of the variability of intra-ensemble zonal temperature trends on the variability of zonal fluctuations of temperature anomalies (associated with the internal variability of atmospheric circulation in the AGCM) is described quite well in terms of the stationary stochastic process model. In such a model, the dependence of the standard deviation of intra-ensemble trends can be approximated by a linear function of the standard deviation of temperature fluctuations, which agrees well with the AGCM results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. V. Bekryaev, I. V. Polyakov, and V. A. Alexeev, J. Clim. 23 (14), 3888–3906 (2010).CrossRefGoogle Scholar
  2. 2.
    C. Deser, A. Phillips, V. Bourdette, and H. Teng, Clim. Dyn. 38, 527–546 (2012).CrossRefGoogle Scholar
  3. 3.
    A. Gelfan, V. A. Semenov, E. Gusev, Y. Motovilov, O. Nasonova, and I. Krylenko, Hydrol. Earth Syst. Sci. 19, 2737–2754 (2015). doi 10.5194/hess-19-2737-2015CrossRefGoogle Scholar
  4. 4.
    D. L. Hartmann, A. M. G. Klein Tank, M. Rusticucci, et al., in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, New York, 2013).Google Scholar
  5. 5.
    J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes (Springer, New York, 1987).CrossRefGoogle Scholar
  6. 6.
    C. E. Leith, J. Appl. Meteorol. 12, 1066–1069 (1973).CrossRefGoogle Scholar
  7. 7.
    E. N. Lorenz, Meteorol. Monogr. 8 (30), 1–3 (1968).Google Scholar
  8. 8.
    N. A. Rayner, D. E. Parker, E. B. Horton, et al., J. Geophys. Res. 108 (D14), 4407 (2003). doi 10.1029/2002JD002670CrossRefGoogle Scholar
  9. 9.
    E. Roeckner, G. Bauml, and L. Bonaventure, The Atmospheric General Circulation Model ECHAM5, Part 1: Model Description, Report 349 (Max Planck Inst. Meteorol., Hamburg, 2003).Google Scholar
  10. 10.
    B. D. Santer, P. W. Thorne, L. Haimberger, et al., Int. J. Climatol. 28, 1703–1722 (2008).CrossRefGoogle Scholar
  11. 11.
    V. A. Semenov, M. Latif, J. H. Jungclaus, et al., Geophys. Res. Lett. 35 (11), (2008). doi 10.1029/2008gl033273Google Scholar
  12. 12.
    V. A. Semenov and M. Latif, Environ. Res. Lett. 10, 054020 (2015). doi 10.1088/1748-9326/10/5/054020CrossRefGoogle Scholar
  13. 13.
    D. W. J. Thompson, E. A. Barnes, C. Deser, et al., J. Clim. 48, 6433–6456 (2015).Google Scholar
  14. 14.
    M. Winton, A. Adcroft, S. V. M. Griffits, et al., J. Clim. 26, 231–246 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations