Skip to main content
Log in

The stishovite paradox in the evolution of lower mantle magmas and diamond-forming melts (experiment at 24 and 26 GPa)

  • Geochemistry
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Experimental studies of phase relations in the oxide–silicate system MgO–FeO–SiO2 at 24 GPa show that the peritectic reaction of bridgmanite controls the formation of stishovite as a primary in situ mineral of the lower mantle and as an effect of the stishovite paradox. The stishovite paradox is registered in the diamond-forming system MgO–FeO–SiO2–(Mg–Fe–Ca–Na carbonate)–carbon in experiments at 26 GPa as well. The physicochemical mechanisms of the ultrabasic–basic evolution of deep magmas and diamondforming media, as well as their role in the origin of the lower mantle minerals and genesis of ultradeep diamonds, are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. H. Scott Smith, R. V. Danchin, J. W. Harris, and K. J. Stracke, in Kimberlites I: Kimberlites and Related Rocks, Ed. by J. Kornprobst (Elsevier, Amsterdam, 1984), pp. 121–142.

  2. T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, Contrib. Miner. Petrol. 140 (1), 16–27 (2000).

    Article  Google Scholar 

  3. F. Kaminsky, Earth-Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  4. Yu. A. Litvin, Dokl. Earth Sci. 455 (1), 274–278 (2014).

    Article  Google Scholar 

  5. O. Tschauner, Ch. Ma, J. R. Beckett, et al., Science 346 (6213), 1100–1102 (2014).

    Article  Google Scholar 

  6. T. Irifune and T. Tsuchiya, in Treatise on Geophysics (Elsevier, 2007), Vol. 2, Chap. 2.03, pp. 33–62.

    Book  Google Scholar 

  7. Yu. Litvin, A. Spivak, N. Solopova, and L. Dubrovinsky, Phys. Earth Planet. Inter. 228, 176–185 (2014).

    Article  Google Scholar 

  8. Yu. A. Litvin, in Advances in High-Pressure Mineralogy. Geological Society of America Special Paper, Ed. by Eiji Ohtani (Geol. Soc. America, 2007), Vol. 421, pp. 83–103.

  9. M. Akaogi, in Advances in High-Pressure Mineralogy. Geological Society of America Special Paper, Ed. by Eiji Ohtani (Geol. Soc. America, 2007), Vol. 421, pp. 1–13.

    Book  Google Scholar 

  10. C. Liebske and D. J. Frost, Earth Planet. Sci. Lett. 345, 159–170 (2012).

    Article  Google Scholar 

  11. D. J. Frost, B. T. Poe, R. G. Tronnes, et al., Phys. Earth Planet. Inter. 143, 507–514 (2014).

    Google Scholar 

  12. F. N. Rhines, Phase Diagrams in Metallurgy (McGraw Hill, New York, 1956).

    Google Scholar 

  13. L. S. Palatnik and A.I. Landau, Phase Equilibria in Multicomponent Systems (Holt, Rinehart and Winston, Inc., New York, 1964).

    Google Scholar 

  14. S. Maaloe, Principles of Igneous Petrology (Springer, Berlin, 1985).

    Book  Google Scholar 

  15. A. V. Bobrov and Yu. A. Litvin, Russ. Geol. Geophys. 50 (12), 1221–1233 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, A.V. Spivak, D.A. Simonova, L.S. Dubrovinsky, 2017, published in Doklady Akademii Nauk, 2017, Vol. 473, No. 5, pp. 596–599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Spivak, A.V., Simonova, D.A. et al. The stishovite paradox in the evolution of lower mantle magmas and diamond-forming melts (experiment at 24 and 26 GPa). Dokl. Earth Sc. 473, 444–448 (2017). https://doi.org/10.1134/S1028334X17040122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X17040122

Navigation