Doklady Earth Sciences

, Volume 472, Issue 2, pp 231–236 | Cite as

A likely reason for the appearance of the Daly Gap in magmatic series of large igneous provinces: Geological and petrological evidence



The problem of the Daly Gap is considered for the example of bimodal basalt–trachyte series and their intrusive analogs (layered syenite–gabbro intrusions). It is shown that the gap is not controlled by the processes of crystallization differentiation or liquid immiscibility in intermediate chambers of igneous systems (intrusive chambers) and has a primary nature. We interpret its origin as from the existence of two independent types of melts from the materials of head parts of the same mantle plumes. These are mid-alkali Fe–Ti basalt, products of its adiabatic melting, and trachyte, which is the result of incongruent melting of the material of the upper cool rims of plumes under the influence of fluids percolating from the underlying zone of adiabatic melting.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Geodynamics (Siberian Branch Russ. Acad. Sci., GEO, Novosibirsk, 2001) [in Russian].Google Scholar
  2. 2.
    I. D. Ryabchikov and L. N. Kogarko, Dokl. Earth Sci. 463 (1), 680–683 (2015).CrossRefGoogle Scholar
  3. 3.
    E. V. Sharkov, Formation of Layered Intrusives and Their Ore Mineralization (Nauchn. Mir, Moscow, 2006) [in Russian].Google Scholar
  4. 4.
    E. V. Sharkov and O. A. Bogatikov, Dokl. Earth Sci. 460 (2), 154–158 (2015).CrossRefGoogle Scholar
  5. 5.
    E. V. Sharkov, B. V. Belyatsky, M. M. Bogina, et al., Petrology 23 (3), 259–280 (2015).CrossRefGoogle Scholar
  6. 6.
    B. Charlier, O. Namur, M. J. Toplis, et al., Geology 39, 907–910 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Chayes, J. Geophys. Res. 68 (5), 1519–1534 (1963).CrossRefGoogle Scholar
  8. 8.
    R. A. Daly, Igneous Rocks and Their Origin (McGraw-Hill, New York, 1914).Google Scholar
  9. 9.
    S. W. French and B. Romanowicz, Nature 525 (7567), 95–99 (2015). doi 10.1038/nuture14876CrossRefGoogle Scholar
  10. 10.
    S. Maruyama, J. Geol. Soc. Jpn. 100, 24–49 (1994).CrossRefGoogle Scholar
  11. 11.
    M. A. Menzies. Accessed July 25, 2016.Google Scholar
  12. 12.
    J. E. Mungall and R. F. Martin, Contrib. Mineral. Petrol. 119 (1), 43–55 (1995).CrossRefGoogle Scholar
  13. 13.
    A. R. Philpotts and J. J. Ague, Principles of Igneous and Metamorphic Petrology (Cambridge Univ. Press, Cambridge, 2009).CrossRefGoogle Scholar
  14. 14.
    O. T. Rämö, Geol. Surv. Finl., Bull., No. 355, 161 (1991).Google Scholar
  15. 15.
    I. D. Ryabchikov, E. V. Sharkov, and L. N. Kogarko, Bull. Tethys Geol. Soc., Cairo 5, 9–13 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations