Doklady Earth Sciences

, Volume 472, Issue 2, pp 190–195 | Cite as

The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation

Geophysics
  • 28 Downloads

Abstract

Analysis of smoke blanketing of European Russia (ER) in summer 2016 is presented. The results of the analysis indicate that the cause of the smoky atmosphere over ER was long-range transport of smoke from wildfires in Siberia. The aerosol optical thickness at a wavelength of 550 nm over ER in late July reached 3. The features of circulation in the troposphere over northern Eurasia in July 2016, with an anomalous east transfer of combustion products in the troposphere over thousands of kilometers, which is opposite to the westerly transfer prevailing in the mid-latitudes, are discussed. A comparison of variations in the probability distribution functions of the aerosol optical thickness is performed for ER and Siberia for the summer periods in different years with massive wildfires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, et al., Izv., Atmos. Ocean. Phys. 40 (3), 323–336 (2004).Google Scholar
  2. 2.
    I. I. Mokhov and I. A. Gorchakova, Dokl. Earth Sci. 400 (1), 160–163 (2005).Google Scholar
  3. 3.
    I. A. Gorchakova and I. I. Mokhov, Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).CrossRefGoogle Scholar
  4. 4.
    S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, and A. V. Karpov, Dokl. Earth Sci. 446 (2), 1197–1203 (2012).CrossRefGoogle Scholar
  5. 5.
    S. A. Sitnov, Izv., Atmos. Ocean. Phys. 47 (6), 714–728 (2011).CrossRefGoogle Scholar
  6. 6.
    C. L. Myhre, C. Toledano, G. Myhre, et al., Atmos. Chem. Phys. 7, 5899–5915 (2007).CrossRefGoogle Scholar
  7. 7.
    P. Cottle, K. Strawbridge, and I. McKendry, Atmos. Environ. 90, 71–77 (2014).CrossRefGoogle Scholar
  8. 8.
    G. I. Gorchakov, V. M. Kopeikin, S. A. Sitnov, et al., Atmos. Oceanic Opt. 29 (1), 5–11 (2016).CrossRefGoogle Scholar
  9. 9.
    I. I. Mokhov and A. V. Chernokul’skii, Geogr. Prir. Res., No. 2, 120–126 (2010).Google Scholar
  10. 10.
    I. I. Mokhov, A. V. Chernokulsky, and I. M. Shkolnik, Dokl. Earth Sci. A 411 (9), 1485–1488 (2006).CrossRefGoogle Scholar
  11. 11.
    R. C. Levy, L. A. Remer, S. Mattoo, et al., J. Geophys. Res. 112, D13211 (2007).Google Scholar
  12. 12.
    H. H. Aumann, M. T. Chahine, C. Gautier, et al., IEEE Trans. Geosci. Remote Sens. 41, 253–264 (2003).CrossRefGoogle Scholar
  13. 13.
    J. C. Acker and G. Leptoukh, Eos Trans. AGU 88, 14–17 (2007).CrossRefGoogle Scholar
  14. 14.
    C. O. Justice, L. Giglio, S. Korontzi, et al., Remote Sens. Environ. 83, 244–262 (2002).CrossRefGoogle Scholar
  15. 15.
    R. Kistler, W. Collins, S. Saha, et al., Bull. Am. Meteorol. Soc. 82, 247–267 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. A. Sitnov
    • 1
  • I. I. Mokhov
    • 1
    • 2
  • G. I. Gorchakov
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations