Advertisement

Doklady Earth Sciences

, Volume 472, Issue 2, pp 138–142 | Cite as

Spatial–temporal trends of Late Mesozoic plume magmatism in the Arctic during formation of the Amerasian Basin

  • E. V. Shipilov
  • L. I. Lobkovskiy
  • R. Yu. Yurik
Geology
  • 35 Downloads

Abstract

The spatial and temporal characteristics of magmatism caused by the Barents–Amerasian Jurassic–Cretaceous plume in conjunction with the geodynamics of destructive transformations of the lithosphere are presented here. The localities of manifestation of magmatism were concentrated mainly out of general contour of the areal occupied by the Siberian superplume, and they demonstrated certain gravitation to the Caledonide–Ellesmeride belts. This suggests an inherited position of both the J–K plume and the initial detachment zone produced by it: this led to formation of the Canadian Basin. The stages in the evolution and character of polycyclic multiphase plume magmatism are substantiated by the geochronology of magmatic provinces in the Arctic region during formation of the Amerasian Basin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Komarnitskii and E. V. Shipilov, Dokl. Akad. Nauk SSSR 320 (5), 1203–1206 (1991).Google Scholar
  2. 2.
    A. A. Kremenetskii, Yu. A. Kostitsyn, A. F. Morozov, and P. V. Rekant, Geochem. Int. 53 (6), 487–500 (2015).CrossRefGoogle Scholar
  3. 3.
    L. I. Lobkovsky, situated symmetrically relative to the extension and spreading zone 57 (3), 371–386 (2016).Google Scholar
  4. 4.
    A. F. Morozov, O. V. Petrov, S. P. Shokal’skii, et al., Reg. Geol. Metallog., No. 53, 34–55 (2013).Google Scholar
  5. 5.
    A. L. Piskarev, Ch. Heunemann, A. A. Makar’ev, et al., Izv., Phys. Solid Earth 45 (2), 150–166 (2009).CrossRefGoogle Scholar
  6. 6.
    P. I. Fedorov, G. B. Flerov, and D. I. Golovin, Dokl. Earth Sci. 401 (2), 187–191 (2005).Google Scholar
  7. 7.
    E. V. Shipilov, Dokl. Earth Sci. 402 (4), 529–533 (2005).Google Scholar
  8. 8.
    E. V. Shipilov and Yu. V. Karyakin, Dokl. Earth Sci. 439 (1), 955–960 (2011).CrossRefGoogle Scholar
  9. 9.
    E. V. Shipilov, Yu. V. Karyakin, and G. G. Matishov, Dokl. Earth Sci. 426 (4), 564–566 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Corfu, S. Polteau, S. Planke, et al., Geol. Mag. 150 (6), 1127–1135 (2013).CrossRefGoogle Scholar
  11. 11.
    M. G. Dinkelman, N. Kumar, and J. Helwig, Can. Soc. Explor. Geophys. (CSEG) Rec. 33 (9), 22–25 (2008).Google Scholar
  12. 12.
    C. A. Evenchick, W. J. Davis, J. H. Bedard, et al., Geol. Soc. Am. Bull. 127 (9–10), 1366–1390 (2015).CrossRefGoogle Scholar
  13. 13.
    D. J. Kontak, S. M. Jensen, J. Dostal, et al., Can. Mineral. 39, 997–1020 (2001).CrossRefGoogle Scholar
  14. 14.
    K. Nejbert, K. Krajewski, E. Dubinska, and Z. Pecskay, Polar Res. 30, 7306 (2011). doi 10.3402/polar.v30i0.7306CrossRefGoogle Scholar
  15. 15.
    M. Villeneuve and M. C. Williamson, in Proc. 4th Int. Conference on Arctic Margins ICAM-IV (U.S. Department of the Interior Minerals Management Service, Anchorage, 2006), pp. 206–215.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Shipilov
    • 1
  • L. I. Lobkovskiy
    • 2
  • R. Yu. Yurik
    • 1
  1. 1.Polar Geophysical Institute, Kola Science CenterRussian Academy of SciencesMurmanskRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations