Skip to main content
Log in

Manifestation of the Hexatic Phase in Confined Two-Dimensional Systems with Circular Symmetry

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Quasi-two-dimensional systems play an important role in the manufacture of various devices for the needs of nanoelectronics. Obviously, the functional efficiency of such systems depends on their structure, which can change during phase transitions under the influence of external conditions (e.g., temperature). Until now, the main attention has been focused on the search for signals of phase transitions in continuous two-dimensional systems. One of the central issues is the analysis of conditions for the nucleation of the hexatic phase in such systems, which is accompanied by the appearance of defects in the Wigner crystalline phase at a certain temperature. However, both practical and fundamental questions arise about the critical number of electrons at which the symmetry of the crystal lattice in the system under consideration will begin to break and, consequently, the nucleation of defects will start. The dependences of the orientational order parameter and the correlation function, which characterize topological phase transitions, as functions of the number of particles at zero temperature have been studied. The calculation results allow us to establish the precursors of the phase transition from the hexagonal phase to the hexatic one for N = 92, 136, and 187 considered as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. M. Bedanov and F. M. Peeters, Phys. Rev. B 49 (4), 2667 (1994). https://doi.org/10.1103/PhysRevB.49.2667

    Article  CAS  Google Scholar 

  2. A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 57 (4), 2352 (1998). https://doi.org/10.1103/PhysRevB.57.2352

    Article  CAS  Google Scholar 

  3. A. Mughal and M. A. Moore, Phys. Rev. E 76 (1), 011606 (2007). https://doi.org/10.1103/PhysRevE.76.011606

    Article  CAS  Google Scholar 

  4. V. Fortov, A. Ivlev, S. Khrapak, A. Khrapak, and G. Morfill, Phys. Rep. 421, 1 (2005). https://doi.org/10.1016/j.physrep.2005.08.007

    Article  Google Scholar 

  5. V. Soni, L. R. Gόmez, and W. T. M. Irvine, Phys. Rev. X 8, 011039 (2018). https://doi.org/10.1103/PhysRevX.8.011039

    Article  CAS  Google Scholar 

  6. B. P. Binks and T. S. Horozov, Colloidal Particles and Geometry in Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511536670.002

  7. M. E. Leunissen, A. van Blaaderen, A. D. Hollingsworth, M. T. Sullivan, and P. M. Chaikin, Proc. Natl. Acad. Sci. U. S. A. 104 (8), 2585 (2007). https://doi.org/10.1073/pnas.0610589104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. L. Birman, R. G. Nazmitdinov, and V. I. Yukalov, Phys. Rep. 526, 1 (2013). https://doi.org/10.1016/j.physrep.2012.11.005

    Article  CAS  Google Scholar 

  9. E. P. Wigner, Phys. Rev. 46, 1002 (1934). https://doi.org/https://doi.org/10.1103/PhysRev.46.1002

  10. L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959 (1997). https://doi.org/10.1103/PhysRevB.15.1959

    Article  Google Scholar 

  11. D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  12. V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, and E. N. Tsiok, Usp. Fiz. Nauk 187 (9), 921 (2017). https://doi.org/. 06.038161https://doi.org/10.3367/UFNe.2017

  13. V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 900 (1970). https://doi.org/10.1103/PhysRevLett.39.1201

    Article  Google Scholar 

  14. V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971).

    Google Scholar 

  15. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124 (1972). https://doi.org/10.1088/0022-3719/6/7/010

    Article  CAS  Google Scholar 

  16. J. M. Kosterlitz, J. Phys. C 7, 1046 (1974). https://doi.org/10.1088/0022-3719/7/6/005

    Article  Google Scholar 

  17. R. C. Gann, S. Chakravarty, and G. V. Chester, Phys. Rev. B 20, 326 (1979). https://doi.org/10.1103/PhysRevB.20.326

    Article  CAS  Google Scholar 

  18. M. Kong, B. Partoens, and F. M. Peeters, Phys. Rev. E 67, 021608 (2003). https://doi.org/10.1103/PhysRevE.67.021608

    Article  CAS  Google Scholar 

  19. M. Cerkaski, R. G. Nazmitdinov, and A. Puente, Phys. Rev. E 91, 032312 (2015). https://doi.org/10.1103/PhysRevE.91.032312

    Article  CAS  Google Scholar 

  20. R. G. Nazmitdinov, A. Puente, M. Cerkaski, and M. Pons, Phys. Rev. E 95, 042603 (2017). https://doi.org/10.1103/PhysRevE.95.042603

    Article  CAS  PubMed  Google Scholar 

  21. E. G. Nikonov, R. G. Nazmitdinov, and P. I. Glukhovtsev, Comp. Issled. Model. 14 (3), 609 (2022). https://doi.org/10.20537/2076-7633-2022-14-3-609-618

    Article  Google Scholar 

  22. E. G. Nikonov, R. G. Nazmitdinov, and P. I. Glukhovtsev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 17 (1), 235 (2023). https://doi.org/10.1134/S1027451023010354

    Article  CAS  Google Scholar 

  23. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2001).

    Google Scholar 

  24. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978). https://doi.org/10.1103/PhysRevLett.41.121

    Article  CAS  Google Scholar 

  25. L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 627 (1973).

    Google Scholar 

  26. L. D. Landau and E. M. Lifshits, Elasticity Theory (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  27. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979). https://doi.org/10.1103/PhysRevB.19.2457

    Article  CAS  Google Scholar 

  28. A. P. Young, Phys. Rev. B 19, 1855 (1979). https://doi.org/10.1103/PhysRevB.19.1855

    Article  CAS  Google Scholar 

  29. S. Fortune, Algorithmica 2, 153 (1987). https://doi.org/10.1007/BF01840357

    Article  Google Scholar 

  30. F. M. Peeters, Two-Dimensional Electron Systems, Ed. by E. Y. Andrei (Kluwer Academic, Dordrecht, 1997), p. 17.

    Google Scholar 

  31. Y.-J. Lai and I. Lin, Phys. Rev. E 60, 4743 (1999). https://doi.org/10.1103/PhysRevE.60.4743

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the Joint Institute for Nuclear Research project no. 05-6-1118-2014/2023 using the resources of the heterogeneous cluster HybriLIT of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research. Research by E.G. Nikonov were partially carried out within the framework of the Basic Research Program of the National Research University “Higher School of Economics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Nikonov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, E.G., Nazmitdinov, R.G. & Glukhovtsev, P.I. Manifestation of the Hexatic Phase in Confined Two-Dimensional Systems with Circular Symmetry. J. Surf. Investig. 18, 248–254 (2024). https://doi.org/10.1134/S1027451024020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024020149

Keywords:

Navigation