Skip to main content
Log in

Effect of Deformation Nanostructuring on the Ion-Beam Erosion of Copper

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of deformation nanostructuring on the ion-beam erosion of copper at a high fluence of irradiation with 30 keV argon ions is experimentally studied. To form an ultrafine-grained structure with a grain size of ~0.4 μm in copper samples with an initial grain size of about 2 μm, deformation nanostructuring by high-pressure torsion is used. It is found that when a layer with a thickness comparable to the grain size is sputtered, a steady-state cone-shaped relief is formed on the copper surface, the appearance of which does not change with increasing irradiation fluence. It is shown that the smaller the grain size in copper, the greater the concentration and the smaller the height of the cones on the surface. The cone inclination angles, close to 82°, as well as the sputtering yield of 9.6 at/ion, are practically independent of the grain size of copper, the thickness of the sputtered layer, and the irradiation fluence. Calculations using the SRIM program show that, when taking into account the redeposition of atoms from the walls of the cones, the sputtering yield of a cone-shaped copper relief Yc is 3.5 times less than the sputtering yield of a single cone, 1.2 times greater than the sputtering yield of a smooth surface, and the value of 9.25 at/ion is close to the experimentally measured one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. M. Efe, O. El-Atwani, Y. Guoc, and D. R. Klenosky, Scr. Mater. 70, 31 (2014). https://doi.org/10.1016/j.scriptamat.2013.08.013

    Article  CAS  Google Scholar 

  2. Z. Chen, L.-L. Niu, Z. Wang, L. Tian, L. Kecskes, K. Zhu, and Q. Wei, Acta Mater. 147, 100 (2018). https://doi.org/10.1016/j.actamat.2018.01.015

    Article  CAS  Google Scholar 

  3. M. Wurmshuber, S. Doppermann, S. Wurster, S. Jakob, M. Balooch, M. Alfreider, K. Schmuck, R. Bodlos, L. Romaner, P. Hosemann, H. Clemens, V. Maier-Kiener, and D. Kiener, Int. J. Refract. Met. Hard Mater. 111, 106125 (2023). https://doi.org/10.1016/j.ijrmhm.2023.106125

    Article  CAS  Google Scholar 

  4. T. Nagasaki, H. Hirai, M. Yoshino, and T. Yamada, Nucl. Instrum. Methods Phys. Res., Sect. B 418, 34 (2018). https://doi.org/10.1016/j.nimb.2017.12.023

    Article  CAS  Google Scholar 

  5. C. A. Michaluk, J. Electron. Mater. 31, 2 (2002). https://doi.org/10.1007/s11664-002-0165-9

    Article  CAS  Google Scholar 

  6. J.-K. Chen, B.-H. Tsai, and H.-S. Huang, Mater. Trans. 56, 665 (2015). https://doi.org/10.2320/matertrans.M2014411

    Article  CAS  Google Scholar 

  7. M. Reza, Z. Sajuri, J. Yunas, and J. Syarif, IOP Conf. Ser.: Mater. Sci. Eng. 114, 012116 (2016). https://doi.org/10.1088/1757-899X/114/1/01211

  8. V. S. Voitsenya, M. Balden, A. F. Bardamid, V. N. Bondarenko, J. W. Davis, V. G. Konovalov, I. V. Ryzhkov, O. O. Skoryk, S. I. Solodovchenko, and Z. Zhang-jian, Nucl. Instrum. Methods Phys. Res., Sect. B 302, 32 (2013). https://doi.org/10.1016/j.nimb.2013.03.005

    Article  CAS  Google Scholar 

  9. A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Aksenov, G. I. Raab, C. N. Faizova, V. S. Voitsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, Probl. At. Sci. Technol., Ser. Thermonucl. Fusion 34 (4), 50.

  10. W. Yang, G. Zhao, Y. Wang, S. Wang, S. Zhan, D. Wang, M. Bao, B. Tang, L. Yao, and X. Wang, J. Mater. Sci.: Mater. Electron. 32, 26181 (2021). https://doi.org/10.1007/s10854-021-06645-4

    Article  CAS  Google Scholar 

  11. D. Depla, Nucl. Instrum. Methods Phys. Res., Sect. B 328, 65 (2014). https://doi.org/10.1016/j.nimb.2014.03.001

    Article  CAS  Google Scholar 

  12. S. Raggl, J. Postler, J. Winkler, G. Strauss, C. Feist, A. Plankensteiner, M. Eidenberger-Schober, and P. Scheier, J. Vac. Sci. Technol., A 35, 061308 (2017). https://doi.org/10.1116/1.4996074

    Article  CAS  Google Scholar 

  13. S.-K. Wang, W.-H. Yang, Y.-P. Wang, G.-H. Zhao, S.-S. Zhan, D. Wang, B. Tang, and M.-D. Bao, Vacuum 201, 111083 (2022). https://doi.org/10.1016/j.vacuum.2022.111083

    Article  CAS  Google Scholar 

  14. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985) [in Russian].

    Google Scholar 

  15. R. Behrisch and W. Eckstein, Sputtering by Particle Bombardment (Springer, Berlin–Heidelberg, 2007). https://doi.org/10.1007/978-3-540-44502-9

    Book  Google Scholar 

  16. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, et al., Phys. Met. Met. 61, 1170 (1986).

    CAS  Google Scholar 

  17. A. A. Nazarov and R. R. Mulyukov, in Handbook of NanoScience. Engineering and Technology (CRC Press, Boca Raton, 2002), p. 22. https://doi.org/10.1201/9781420040623

    Book  Google Scholar 

  18. M. V. Markushev, E. V. Avtokratova, S. V. Krymskiy, V. V. Tereshkin, and O. Sh. Sitdikov, Lett. Mater. 12 (4s), 463 (2022). https://doi.org/10.22226/2410-3535-2022-4-463-468

    Article  Google Scholar 

  19. R. Kh. Khisamov, G. R. Khalikova, A. A. Kistanov, G. F. Korznikova, E. A. Korznikova, K. S. Nazarov, S. N. Sergeev, R. U. Shayakhmetov, R. R. Timiryaev, Yu. M. Yumaguzin, and R. R. Mulyukov, Continuum Mech. Thermodyn. 35, 1433 (2023). https://doi.org/10.1007/s00161-022-01145-0

    Article  CAS  Google Scholar 

  20. M. Sun, C. Ding, J. Xu, D. Shan, B. Guo, and T. G. Langdon, Crystals 13, 887 (2023). https://doi.org/10.3390/cryst13060887

    Article  CAS  Google Scholar 

  21. A. P. Zhilyaev, S. N. Sergeev, and T. G. Langdon, J. Mater. Res. Technol. 3, 338 (2014). https://doi.org/10.1016/j.jmrt.2014.06.008

    Article  CAS  Google Scholar 

  22. O. Auciello, J. Vac. Sci. Technol., A 19, 841 (1981). https://doi.org/10.1116/1.571224

    Article  CAS  Google Scholar 

  23. G. Carter, M. J. Nobes, and J. L. Whitton, Appl. Phys. A: Solids Surf. 38, 77 (1985). https://doi.org/10.1007/BF00620458

    Article  Google Scholar 

  24. L. B. Begrambekov, A. M. Zakharov, and V. G. Telkovsky, Nucl. Instrum. Methods Phys. Res., Sect. B 115, 456 (1996). https://doi.org/10.1016/0168-583X(95)01514-0

    Article  CAS  Google Scholar 

  25. V. Brackmann, V. Hoffmann, A. Kauffmann, A. Helth, J. Thomas, H. Wendrock, J. Freudenberger, T. Gemming, and J. Eckert, Mater. Charact. 91, 76 (2014). https://doi.org/10.1016/j.matchar.2014.02.002

    Article  CAS  Google Scholar 

  26. K. H. Westmacott and R. E. Smallman, Philos. Mag. 1, 34 (1956). https://doi.org/10.1080/14786435608238074

    Article  Google Scholar 

  27. R. K. Khisamov, K. S. Nazarov, L. R. Zubairov, A. A. Nazarov, R. R. Mulyukov, I. M. Safarov, S. N. Sergeev, I. I. Musabirov, D. D. Phuong, P. V. Trinh, N. V. Luan, P. N. Minh, and N. Q. Huan, Phys. Solid State 57, 1206 (2015). https://doi.org/10.1134/S1063783415060177

    Article  CAS  Google Scholar 

  28. Yu. N. Zhukova, E. S. Mashkova, V. A. Molchanov, V. M. Sotnikov, and V. Ekshtain, Izv. Akad. Nauk, Ser. Fiz. 58 (3), 92 (1994).

    CAS  Google Scholar 

  29. N. N. Andrianova, A. M. Borisov, E. S. Mashkova, and A. S. Nemov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 3, 79 (2005).

  30. W. L. Chan and E. Chason, J. Appl. Phys. 101, 121301 (2007). https://doi.org/10.1063/1.2749198

    Article  CAS  Google Scholar 

  31. U. Littmark and W. O. Hofer, J. Mater. Sci. 13, 2577 (1978). https://doi.org/10.1007/BF00552687

    Article  CAS  Google Scholar 

  32. M. Kustner, W. Eckstein, V. Dose, and J. Roth, Nucl. Instrum. Methods Phys. Res., Sect. B 145, 320 (1998). https://doi.org/10.1016/S0168-583X(98)00399-1

    Article  CAS  Google Scholar 

  33. M. A. Makeev and A.-L. Barabasi, Nucl. Instrum. Methods Phys. Res., Sect. B 222, 316 (2004). https://doi.org/10.1016/j.nimb.2004.02.027

    Article  CAS  Google Scholar 

  34. R. Stadlmayr, P. S. Szabo, B. M. Berger, C. Cupak, R. Chiba, D. Blöch, D. Mayer, B. Stechauner, M. Sauer, A. Foelske-Schmitz, M. Oberkofler, T. Schwarz-Selinger, A. Mutzke, and F. Aumayr, Nucl. Instrum. Methods Phys. Res., Sect. B 430, 42 (2018). https://doi.org/10.1016/j.nimb.2018.06.004

    Article  CAS  Google Scholar 

  35. V. I. Shulga, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14, 1346 (2020). https://doi.org/10.1134/S1027451020060440

    Article  CAS  Google Scholar 

  36. A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, R. K. Khisamov, and R. R. Mulyukov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 15, S66 (2021). https://doi.org/10.31857/S1028096022030062

    Article  CAS  Google Scholar 

  37. A. M. Borisov, E. S. Mashkova, M. A. Ovchinnikov, R. K. Khisamov, and R. R. Mulyukov, Tech. Phys. Lett. 48 (6), 55 (2022). https://doi.org/10.21883/TPL.2022.06.53792.19146

    Article  Google Scholar 

  38. C. Cupak, P. S. Szabo, H. Biber, R. Stadlmayr, C. Grave, M. Fellinger, J. Brötzner, R. A. Wilhelm, W. Möller, A. Mutzke, M. V. Moro, and F. Aumayr, Appl. Surf. Sci. 570, 151204 (2021). https://doi.org/10.1016/j.apsusc.2021.151204

    Article  CAS  Google Scholar 

  39. P. S. Szabo, C. Cupak, H. Biber, N. Jaggi, A. Galli, P. Wurz, and F. Aumayr, Surf. Interfaces 30, 101924 (2022). https://doi.org/10.1016/j.surfin.2022.101924

    Article  CAS  Google Scholar 

  40. C. Diddens and S. J. Linz, Eur. Phys. J. B 88, 190 (2015). https://doi.org/10.1140/epjb/e2015-60468-7

    Article  CAS  Google Scholar 

  41. J. F. Ziegler and J. P. Biersack, SRIM, 2013. http://www.srim.org.

Download references

ACKNOWLEDGMENTS

Electron microscopic studies were carried out on the basis of the Center for Collective Use of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences, “Structural, Physical, and Mechanical Studies of Materials”.

Funding

The work by A.M. Borisov was carried out under the support of the Russian Science Foundation (grant no. 21-79-30 058); the work by R.Kh. Khisamov and R.R. Mulyukov was carried out as part of a state assignment of the Institute for Metals Superplasticity Problems, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Ethics declarations

The authors of this study declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianova, N.N., Borisov, A.M., Ovchinnikov, M.A. et al. Effect of Deformation Nanostructuring on the Ion-Beam Erosion of Copper. J. Surf. Investig. 18, 305–312 (2024). https://doi.org/10.1134/S1027451024020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024020046

Keywords:

Navigation