Skip to main content
Log in

Abstract

A review of the electron-probe parameters of a scanning electron microscope and of methods for their measurements is given. Three definitions of the concept of the electron-probe diameter are presented. It is shown that the definition of the probe diameter as the size of the effective square beam with a uniform electron-density distribution is most convenient. A method for measuring the probe diameter using blade diaphragms is analyzed. The drawbacks of this method are shown. Methods for measuring the probe diameter by means of test objects with rectangular groove profiles, by means of those with trapezoidal profiles and large side-wall inclination angles, and by means of two coordinates and one certified test object size are given. Methods for measuring the electron-density distribution in the low-voltage microscope probe, the vertical probe profile, and the probe nonorthogonality with respect to the measured-object plane are described. A method for experimentally determining the probe-diameter dependence on the electron-beam current is presented. It is shown that, for tungsten cathodes, the theory of electron-probe formation does not coincide with experiments. The influence of probe focusing on the relief image in the scanning electron microscope operating in all modes is described. It is concluded that it is necessary to focus the microscope in the high-voltage mode when recording slow secondary electrons even in the case where measurements are conducted in the mode of backscattered-electron recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer-Verlag. Berlin, Heidelberg, New York, 1998).

  2. Practical Scanning Electron Microscopy. Electron and Ion Microprobe Analysis, Ed. by J. I. Goldstein and H. Yakowitz, (Plenum Press, New York, London, 1975).

  3. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Materials Scientists, and Geologists (Plenum Press, New York, London, 1981).

  4. Microanalysis and Scanning Electron Microscopy, Ed. F. Maurice, L. Meny, and R. Tixier (Metallurgiya, Moscow, 1985 [in Russian].

  5. M. M. Krishtal, I. S. Yasnikov, V. I. Polunin, A. M. Filatov, and A. G. Ul’yanenkov, Scanning Electron Microscopy and X-ray Spectral Microanalysis. Examples of Practical Application (Tekhnosfera, Moscow, 2009) [in Russian].

  6. Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. W. Zhou and Z. L. Wang (Springer, New York, 2006).

  7. T. Hatsuzawa, K. Toyoda, and Y. Tanimura, Rev. Sci. Instrum. 61 (3), 975 (1990).

    Article  CAS  Google Scholar 

  8. Yu. A. Novikov and A. V. Rakov, Russ. Microelectron. 25 (6), 368 (1996).

    Google Scholar 

  9. Yu. A. Novikov and A. V. Rakov, Russ. Microelectron. 25 (6), 375 (1996).

    Google Scholar 

  10. Yu. A. Novikov and A. V. Rakov, Meas. Tech. 42 (1), 20 (1999).

    Article  Google Scholar 

  11. M. T. Postek and A. E. Vladar, Critical dimension metrology and the scanning electron microscope, in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001).

    Google Scholar 

  12. M. T. Postek, Proc. SPIE 4608, 84 (2002).

    Article  Google Scholar 

  13. M. T. Postek, Vestn. Tekh. Regul., No. 7, 8 (2007).

  14. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009).

  15. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740504 (2009). https://www.doi.org/10.1117/12.826164

    Article  Google Scholar 

  16. Yu. A. Novikov, Modern scanning electron microscopy. 1. Secondary electron emission, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., 2023 (in press).

  17. Yu. A. Novikov, Modern scanning electron microscopy. 2. Test objects for SEM, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., 2023 (in press).

  18. Yu. A. Novikov and A. V. Rakov, Tr. Inst. Obshch. Fiz. Akad. Nauk 49, 66 (1995).

    CAS  Google Scholar 

  19. Yu. A. Novikov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 5, 105 (2013). https://www.doi.org/10.7868/S0207352813050107

  20. Yu. A. Novikov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 105 (2013). https://www.doi.org/10.7868/S0207352813080131

  21. SEM Performance Standard. Standard Reference Material 2069a (NBS, 1985).

    Google Scholar 

  22. E. Oho, T. Sasaki, and K. Kanaya, Res. Rep. Kogakuin Univ., No. 59, 106 (1985).

  23. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, P. A. Todua, Tr. Inst. Obshch. Fiz. Akad. Nauk 62, 77 (2006).

    Google Scholar 

  24. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C (2008). https://www.doi.org/10.1117/12.794891

    Article  Google Scholar 

  25. I. Broday and J. Merey, Physical Foundations of Microtechnology (Mir, Moscow, 1985) [in Russian].

  26. Yu. A. Novikov and A. V., Rakov, Secondary electron emission from the relief surface of a solid body, Tr. Inst. Obshch. Fiz. Akad. Nauk 55, 3 (1998).

    CAS  Google Scholar 

  27. Yu. A. Novikov, A. V., Rakov, and I. Yu. Stekolin, Poverkhnost’, No. 4, 75 (1994).

  28. L. B. Rosenfeld and A. V. Suvorinov, Izv. Ross. Akad. Nauk, Ser. Fiz. 64 (8), 1594 (2000).

    Google Scholar 

  29. E. A. Grachev, E. A. Cheremukhin, and A. I. Chulichkov, Matem. Model. 15 (3), 83 (2003).

    Google Scholar 

  30. F. A. Lukyanov, E. I. Rau, R. A. Sennov, E. B. Yakimov, and S. I. Zaitsev, Zavod. Lab., Diagn. Mater. 77 (3), 39 (2011).

    Google Scholar 

  31. Yu. A. Novikov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 6, 68 (2020). https://www.doi.org/10.31857/S1028096020050106

  32. Yu. A. Novikov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 46 (2014). https://www.doi.org/10.7868/S0207352814080101

  33. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208 (2008). https://www.doi.org/10.1117/12.794834

    Article  Google Scholar 

  34. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13 (6), 1284 (2019). https://www.doi.org/10.1134/S1027451019060454

    Article  CAS  Google Scholar 

  35. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14 (1), 105 (2020). https://www.doi.org/10.1134/S1027451020010127

    Article  CAS  Google Scholar 

  36. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 16 (5), 806 (2022). https://www.doi.org/10.1134/S1027451022050147

    Article  CAS  Google Scholar 

  37. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 1260 (2017). https://www.doi.org/10.7868/S0207352817110105

    Article  CAS  Google Scholar 

  38. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12, 1224 (2018). https://www.doi.org/10.1134/S0207352818120144

    Article  CAS  Google Scholar 

  39. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Mikroelektronika 31 (4), 243 (2002).

    Google Scholar 

  40. W. Häßler-Grohne and H. Bosse, Meas. Sci. Technol. 9, 1120 (1998).

    Article  Google Scholar 

  41. Yu. A. Novikov and I. Yu. Stekolin, Tr. Inst. Obshch. Fiz. Akad. Nauk 49, 41 (1995).

    CAS  Google Scholar 

  42. Yu. A. Novikov, Test, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14 (5), 965 (2020). https://www.doi.org/10.1134/S1027451020050134

    Article  CAS  Google Scholar 

  43. Yu. A. Novikov, S. A. Darznek, M. N. Filippov, V. B. Mityukhlyaev, A. V. Rakov, and P. A. Todua, Proc. SPIE 7025, 702511 (2008). https://www.doi.org/10.1117/12.802428

    Article  Google Scholar 

  44. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 15 (5), 987 (2021). https://www.doi.org/10.31857/S1028096021040117

    Article  CAS  Google Scholar 

  45. Yu. A. Novikov, S. V. Peshekhonov, A. V. Rakov, S. V. Sedov, A. N. Simonov, I. Yu. Stekolin, and I. B. Strizhkov, Izv. Ross. Akad. Nauk, Ser. Fiz. 57 (8), 84 (1993).

    CAS  Google Scholar 

  46. Yu. A. Novikov and I. Yu. Stekolin, Tr. Inst. Obshch. Fiz. Akad. Nauk 49, 41 (1995).

    CAS  Google Scholar 

  47. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Poverkhn., Fiz., Khim., Mekh., No. 4, 75 (1994).

  48. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Izv. Ross. Akad. Nauk, Ser. Fiz. 60 (2), 148 (1996).

    CAS  Google Scholar 

  49. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Izmerit. Tekh., No. 6, 60 (1995).

  50. Yu. A. Novikov and A. V. Rakov, Izmerit. Tekh., No. 7, 27 (1996).

  51. Yu. A. Novikov and A. V. Rakov, I. Yu. Stekolin, I. B. Strizhkov, Izmerit. Tekh., No. 12, 24 (1993).

  52. Ch. P. Volk, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Izmerit. Tekh., No. 6, 18 (2008).

  53. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (4), 890 (2017). https://www.doi.org/10.1134/S1027451017040255

    Article  CAS  Google Scholar 

  54. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (6), 1277 (2013). https://www.doi.org/10.1134/S1027451013130090

    Article  CAS  Google Scholar 

  55. Yu. A. Novikov, Mikroelektronika 43 (5), 373 (2014). https://www.doi.org/10.7868/S0544126914050068

    Google Scholar 

  56. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (6), 1252 (2014). https://www.doi.org/10.1134/S1027451014060135

    Article  CAS  Google Scholar 

  57. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  58. Yu. A. Novikov, Mikroelektronika 44 (4), 306 (2015). https://www.doi.org/10.7868/S0544126915030072

    Google Scholar 

  59. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., No. 2, 66 (2016). https://www.doi.org/10.7868/S0207352816020086

  60. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227 (2009). https://www.doi.org/10.1117/12.814062

    Article  Google Scholar 

  61. M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7521, 752116 (2010). https://www.doi.org/10.1117/12.854696

    Article  Google Scholar 

  62. Yu. A. Novikov, Mikroelektronika 46 (1), 61 (2017). https://www.doi.org/10.7868/S0544126917010070

    Google Scholar 

  63. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Izmerit. Tekh., No. 12, 26 (1996).

  64. M. Sziladyi, Electronic and Ion Optics (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

  65. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Izmerit. Tekh., No. 5, 13 (2004).

  66. T. E. Everhart and R. F. M. Thornley, J. Sci. Instrum. 37, 246 (1960).

    Article  Google Scholar 

  67. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (6), 1283 (2013). https://www.doi.org/10.1134/S1027451013130107

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by L. Kulman

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Modern Scanning Electron Microscopy. 3. Electron Probe. J. Surf. Investig. 18, 185–209 (2024). https://doi.org/10.1134/S1027451024010312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010312

Keywords:

Navigation