Skip to main content
Log in

Calorimetric and Volumetric Studies of Dislocations during Martensitic Transformations in TiNi Alloy with Shape Memory

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

An in-depth analysis of calorimetric and volumetric data for direct, reverse, and deformation martensitic transformations in the nanostructured alloy Ti49.3Ni50.7 with shape memory is carried out. The samples are obtained by cold rolling with the simultaneous action of a high-density pulsed current. A new technique for processing calorimetry spectra is applied, with the help of which, for the first time, the staging and kinetics of changes in the heat content are studied in detail, as well as thermal effects (enthalpy of individual stages) during direct and reverse martensitic transformations occurring under the influence of temperature. By processing volumetric data, using theoretical values of the dislocation density and elements of classical dislocation theory, it is shown that in the Ti49.3Ni50.7 alloy with shape memory subjected to cold plane deformation (rolling) accompanied by the action of a pulsed current, a strain-induced martensitic transformation occurs. This transformation results in a positive volume effect (∆V/V ≈ 3 × 10–3), which can be largely due to dislocations. It is demonstrated that the possible contributions of dislocations to the enthalpy of direct and reverse martensitic transformations in the Ti49.3Ni50.7 alloy can and should be significantly lower in absolute value, but opposite in sign relative to the observed enthalpy of direct and reverse martensitic transformations in this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. V. Kurdyumov, L. M. Utevsky, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. T. V. Eterashvili, L. M. Utevskii, and M. N. Spasskii, Fiz. Met. Metaloved. 49, 807 (1979).

    Google Scholar 

  3. D. P. Rodionov and V. M. Schastlivtsev, Steel Monocrystals (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1996) [in Russian].

    Google Scholar 

  4. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, Fiz. Tverd. Tela 61 (12), 2274 (2019). https://doi.org/10.21883/FTT.2019.12.48532.04ks

    Article  Google Scholar 

  5. M. P. Kashchenko, The Wave Model of Martensite Growth for the γ-α Transformation of Iron-Based Alloys (Regul. Khaoticheskaya Din., Izhevsk. Inst. Comp. Issled., Moscow, Izhevsk, 2010) [in Russian].

    Google Scholar 

  6. M. P. Kashchenko and V. G. Chashchyna, Dynamic Model for Formation of Twinned Martensite Crystals of γα Transformation in Iron Based Alloys (Ural. Gos. Lesotekh. Univ., Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  7. Yu. S. Nechaev, Usp. Fiz. Nauk 178 (7), 709 (2008). https://doi.org/10.3367/UFNr.0178.200807b.0709

    Article  Google Scholar 

  8. Yu. S. Nechaev, Usp. Fiz. Nauk 181 (5), 483 (2011). https://doi.org/10.3367/UFNr.0181.201105b.0483

    Article  Google Scholar 

  9. J. Wild, A. Cerezo, and G. D. W. Smith, Scripta Mater. 43, 39 (2000). https://www.doi.org/10.1016/S1359-6462(00)00361-4

    Article  Google Scholar 

  10. A. A. Misochenko, J. V. T. Kumar, S. Jayaprakasam, K. A. Padmanabhan, and V. V. Stolyarov, Defect Diffus. Forum 385, 169 (2018). https://doi.org/10.4028/www.scientific.net/DDF.385.169

    Article  Google Scholar 

  11. A. A. Potapova (A. A. Misochenko), Candidate’s Dissertation in Technical Sciences (Moscow State University, Moscow, 2014).

  12. J. Friedel, Dislocations (Mir, Moscow, 1967) [in Russian].

  13. J. Hirt and I. Lote, Theory of Dislocations (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  14. Yu. S. Nechaev, N. M. Alexandrova, A. O. Cheretaeva, V. L. Kuznetsov, A. Öchsner, E. K. Kostikova, and Yu. V. Zaika, Int. J. Hydrogen Energy 45 (46), 25030 (2020). https://www.doi.org/10.1016/j.ijhydene.2020.06.242

    Article  CAS  Google Scholar 

  15. Yu. S. Nechaev, N. M. Aleksandrova, N. A. Shurygina, A. O. Cheretaeva, E. A. Denisov, and E. K. Kostikova, Izv. Ross. Akad. Nauk, Ser. Fiz. 85 (7), 918 (2021). https://www.doi.org/10.31857/S0367676521070164

  16. G. V. Kurdyumov and L. G. Khandros, SU Scientific Discovery № 239, Byull. Izobret., 1980.

    Google Scholar 

  17. O. A. Kaibyshev and R. Z. Valiev, SU Scientific Discovery no. 339, Byull. Izobret., No. 7 (1987).

  18. Nechaev Yu.S., Defect Diffus. Forum 385, 120 (2018).

    Google Scholar 

  19. R. V. Sundeev, A. V. Shalimova, A. M. Glezer, G. I. Nosova, M. V. Gorshenkov, E. A. Pechina, and A. A. Glezer, Mater. Sci. Eng. A 679, 1 (2017).

    Article  CAS  Google Scholar 

  20. S. V. Divinski, G. Reglitz, H. Rösner, G. Wilde, and Y. Estrin, Acta Mater. 59 (5), 1974 (2011).

    Article  CAS  Google Scholar 

  21. R. Z. Valiev and O. A. Kaibyshev, Dokl. Akad. Nauk SSSR 239, 91 (1980).

    Google Scholar 

  22. R. Z. Valiev and O. A. Kaibyshev, Dokl. Akad. Nauk SSSR 236 (2), 339 (1977).

    CAS  Google Scholar 

  23. Q. Zhang, W. P. Song, X. H. Li, V. V. Stolyarov, and X. Y. Zhang, Mater. Sci. Technol. 32, 1200 (2016). https://www.doi.org/10.1080/02670836.2015.1114206

    Article  CAS  Google Scholar 

  24. V. E. Gunter, A. N. Matyunin, and L. A. Monasevich, Inst. Prikl. Fiz., No. 1, 42 (1993).

  25. S. A. Egorov and A. E. Volkov, Zh. Tekh. Fiz. 87 (2), 204 (2017).

    Google Scholar 

Download references

Funding

The study was carried out as part of a Russian Science Foundation project no. 23-22-00315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Nechaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaev, Y.S., Denisov, E.A., Shurygina, N.A. et al. Calorimetric and Volumetric Studies of Dislocations during Martensitic Transformations in TiNi Alloy with Shape Memory. J. Surf. Investig. 18, 135–141 (2024). https://doi.org/10.1134/S1027451024010294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010294

Keywords:

Navigation