Skip to main content
Log in

Visualization of Structural Domains in a Single Crystal of Iron Pnictide EuFe2As2

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

It is known that, during the synthesis of superconducting EuRbFe4As4 single crystals, inclusions of its parent phase EuFe2As2 are encountered. The kinetics of the formation of the orthorhombic phase in EuRbFe4As4 crystals containing a large fraction of the EuFe2As2 phase is studied using polarization optical microscopy. It is shown that the orthorhombic phase grows into the tetragonal one in the form of stripes that form macrodomains with one of the possible crystallographic orientations. Then these domains are abruptly penetrated by parallel stripes of the orthorhombic phase having the second orientation, as a result of which a twin system of orthorhombic domains is formed. The process is accompanied by the appearance of macrostresses: stretching and compression waves with a characteristic period of 100–300 μm along and across the twin system, which lead to spatial modulation of the magnetic permeability. It is found that even weak magnetic fields (up to 100 Oe) significantly affect the spatial distribution of the twin structure producing an effect similar to external stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. C. F. Miclea, M. Nicklas, H. S. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, and F. Steglich, Phys. Rev. B 79, 212509 (2009). http://doi.org./10.1103/PhysRevB.79.212509

    Article  Google Scholar 

  2. Yu. A. Izyumov and E. Z. Kurmaev, Phys.-Usp. 51, 1261 (2008). http://doi.org./10.3367/UFNr.0178.200812d.1307

  3. S. Nandi, W. T. Jin, Y. Xiao, Y. Su, S. Price, D. K. Shukla, J. Strempfer, H. S. Jeevan, P. Gegenwart, and Th. Brückel, Phys. Rev. B 89, 014512 (2014). http://doi.org./10.1103/PhysRevB.89.014512

    Article  Google Scholar 

  4. A. Yu. Degtyarenko, I. A. Karateev, A. V. Ovcharov, V. A. Vlasenko, and K. S. Pervakov, Nanomaterials 12, 3801 (2022). http://doi.org./10.3390/nano12213801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. Vlasenko, K. Pervakov, and S. Gavrilkin, Supercond. Sci. Technol. 33, 084009 (2020). http://doi.org./10.1088/1361-6668/ab9aa5

    Article  Google Scholar 

  6. T. K. Kim, K. S. Pervakov, D. V. Evtushinsky, S. W. Jung, G. Poelchen, K. Kummer, V. A. Vlasenko, A. V. Sadakov, A. S. Usoltsev, V. M. Pudalov, D. Roditchev, V. S. Stolyarov, D. V. Vyalikh, V. Borisov, R. Valentí, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. B 103, 174517 (2021). http://doi.org./10.1103/PhysRevB.103.174517

    Article  CAS  Google Scholar 

  7. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature 453, 899 (2008). http://doi.org./10.1038/nature07057

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Tanatar, A. Kreyssig, S. Nandy, N. Ni, S. L. Budko, P. C. Canfield, A. I. Goldman, and R. Prozorov, Phys. Rev. B 79, 180508 (2009). http://doi.org./10.1103/PhysRevB.79.180508

    Article  Google Scholar 

  9. N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 78, 014523 (2008). http://doi.org./10.1103/PhysRevB.78.014523

    Article  Google Scholar 

  10. A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi, N. Ni, S. L. Bud’ko, P. C. Canfield, and R. J. McQueeney, Phys. Rev. B 78, 100506 (2008). http://doi.org./10.1103/PhysRevB.78.100506

    Article  Google Scholar 

  11. S. Zapf and M. Dressel, Rep. Prog. Phys. 80, 016501 (2017). http://doi.org./10.1088/0034-4885/80/1/016501

    Article  PubMed  Google Scholar 

  12. I. S. Veshchunov, L. Ya. Vinnikov, V. S. Stolyarov, N. Zhou, Z. X. Shi, X. F. Xu, S. Yu. Grebenchuk, D. S. Baranov, I. A. Golovchanskiy, S. Pyon, Y. Sun, W. Jiao, G. Cao, T. Tamegai, and A. A. Golubov, JETP Lett. 105, 98 (2017). http://doi.org./10.1134/S0021364017020151

    Article  CAS  Google Scholar 

  13. L. Ya. Vinnikov, I. S. Veshchunov, M. S. Sidelnikov, and V. S. Stolyarov, Instrum. Exp. Tech. 62, 587 (2019). http://doi.org./10.1134/S0020441219040122

    Article  Google Scholar 

  14. M. Tegel, M. Rotter, V. Weiß, F. M. Schappacher, R. Pöttgen, and D. Johrendt, J. Phys.: Condens. Matter 20, 452201 (2008). http://doi.org./10.1088/0953-8984/20/45/452201

    Google Scholar 

  15. Y. Xiao, Y. Su, W. Schmidt, K. Schmalzl, C. M. N. Kumar, S. Price, T. Chatterji, R. Mittal, L. J. Chang, S. Nandi, N. Kumar, S. K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 81, 220406 (2010). http://doi.org./10.1103/PhysRevB.81.220406

    Article  Google Scholar 

  16. S. Zapf, C. Stingl, K. W. Post, J. Maiwald, N. Bach, I. Pietsch, D. Neubauer, A. Löhle, C. Clauss, S. Jiang, H. S. Jeevan, D. N. Basov, P. Gegenwart, and M. Dressel, Phys. Rev. Lett. 113, 227001 (2014). http://doi.org./10.1103/PhysRevLett.113.227001

    Article  CAS  PubMed  Google Scholar 

  17. Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, Phys.—Usp. 57, 827 (2014). http://doi.org./10.3367/UFNr.0184.201408j.0897

  18. D. E. Batova, V. K. Vlasko-Vlasov, V. A. Goncharov, G. E. Emel’chenko, M. V. Indenbom, and Yu. A. Osip’yan, Zh. Eksp. Teor. Fiz. 94, 356 (1988).

    CAS  Google Scholar 

  19. L. S. Uspenskaya, O. A. Tikhomirov, S. I. Bozhko, S. V. Egorov, and A. A. Chugunov, J. Appl. Phys. 113, 163907 (2013). http://doi.org./10.1063/1.4803051

    Article  Google Scholar 

  20. Z. R. Musaeva, N. A. Vybornov, N. A. Bulatov, V. K. Karpasyuk, L. S. Uspenskaya, and S. Kh. Yazenkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 1, 423 (2007).

    Article  Google Scholar 

  21. L. S. Uspenskaya, T. Nurgaliev, B. Blagoev, T. Donchev, and S. Miteva, Bull. Russ. Acad. Sci.: Phys. 72, 540 (2008).

    Article  Google Scholar 

  22. C. Mirri, A. Dusza, S. Bastelberger, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and L. Degiorgi, Phys. Rev. B 89, 060501 (2014). http://doi.org./10.1103/PhysRevB.89.060501

    Article  Google Scholar 

  23. C. Mirri, A. Dusza, S. Bastelberger, J.-H. Chu, H.-H. Kuo, I. R. Fisher, Degiorgi. L., J. Supercond. Nov. Magn. 29, 3053 (2016). http://doi.org./10.1007/s10948-016-3773-y

    Article  CAS  Google Scholar 

  24. A. Pal, M. Chinotti, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and L. Degiorgi, NPJ Quantum Mater. 4, 3 (2019). http://doi.org./10.1038/s41535-018-0140-1

  25. G. A. Smolenskii, V. A. Bokov, V. A. Yusupov, N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferroelectrics and Antiferroelectrics (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  26. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  27. L. Degiorgi, Front. Phys. 10, 866664 (2022). http://doi.org./10.3389/fphy.2022.866664

    Article  Google Scholar 

Download references

Funding

The work was carried out at the Osipyan Institute of Solid State Physics, Russian Academy of Sciences, within the framework of a State Assignment. The authors express their gratitude to O.A. Tikhomirov for discussion of the research results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Uspenskaya or L. Ya. Vinnikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, L.S., Sidelnikov, M.S., Pervakov, K.S. et al. Visualization of Structural Domains in a Single Crystal of Iron Pnictide EuFe2As2. J. Surf. Investig. 18, 47–52 (2024). https://doi.org/10.1134/S1027451024010191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010191

Keywords:

Navigation