Skip to main content
Log in

Abstract

The study examines the strength of sapphire fibers produced using the modified Stepanov/edge-defined film-fed growth (EFG) method. Investigation of the surface shows that the roughness of the sapphire fibers obtained from the melt is primarily due to their oscillation in ascending gas streams during growth. The effect of the surface roughness of the fiber on its strength is studied. Using a fiber-diameter stabilization system brings the roughness parameters to a few tens of nanometers. Reducing the surface roughness of the fiber increases its strength, and the strength of the fibers decreases with length in a power-law dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Handbook of Ceramic Composites, Ed. by N. P. Bansal (Kluwer, Berlin, 2005).

    Google Scholar 

  2. Metallic Matrix Composites, Ed. by K. G. Kreider (Academic, New York, 1974).

    Google Scholar 

  3. S. N. Tewari, R. Asthana, and R. D. Noebe, Metall. Trans. A 24, 2119 (1993). https://doi.org/10.1007/BF02666345

    Article  Google Scholar 

  4. B. Chalmers, H. E. LaBelle, and A. I. Mlavsky, J. Crystal Growth. 13–14, 84 (1972). https://doi.org/10.1016/0022-0248(72)90067-X

    Article  Google Scholar 

  5. H. E. LaBelle, J. Crystal Growth. 50, 8 (1980). https://doi.org/10.1016/0022-0248(80)90226-2

    Article  CAS  Google Scholar 

  6. V. N. Kurlov, S. N. Rossolenko, N. V. Abrosimov, and Kh. Lebbou, in Shaped Crystal Growth in Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques, Ed. by Th. Duffar (Wiley, Hoboken, 2010), p. 277. https://doi.org/10.1002/9781444320237.ch5

  7. A. V. Stepanov, The Future of Metalworking (Lenizdat, Leningrad, 1963) [in Russian].

    Google Scholar 

  8. P. Rudolph and T. Fukuda, Cryst. Res. Technol. 34, 3 (1999). https://doi.org/10.1002/(SICI)1521-4079(199901)34:1<3::AID-CRAT3>3.0.CO;2-X

    Article  CAS  Google Scholar 

  9. Fiber Crystal Growth from the Melt, Ed. by T. Fukuda, P. Rudolph, and S. Uda (Springer, New York, 2004). https://doi.org/10.1007/978-3-662-07214-1

  10. R. S. Feigelson, J. Crystal Growth. 79, 669 (1986). https://doi.org/10.1016/0022-0248(86)90535-X

    Article  CAS  Google Scholar 

  11. G. N. Merberg and J. A. Harrington, Appl. Opt. 32, 3201 (1993). https://doi.org/10.1364/AO.32.003201

    Article  CAS  PubMed  Google Scholar 

  12. S. T. Mileiko and V. I. Kazmin, J. Mater. Sci. 27, 2165 (1992). https://doi.org/10.1007/BF01117932

    Article  CAS  Google Scholar 

  13. V. N. Kurlov, V. M. Kiiko, A. A. Kolchin, and S. T. Mileiko, J. Crystal Growth. 204, 499 (1999). https://doi.org/10.1016/S0022-0248(99)00213-4

    Article  CAS  Google Scholar 

  14. V. N. Kurlov, D. O. Stryukov, and I. A. Shikunova J. Phys.: Conf. Ser. 673, 0120175 (2016). https://doi.org/10.1088/1742-6596/673/1/012017

    Article  CAS  Google Scholar 

  15. A. N. Magunov, Laser Thermometry of Solids (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  16. G. M. Katyba, K. I. Zaytsev, I. N. Dolganova, N. V. Chernomyrdin, Ulitko.V.E., S. N. Rossolenko, I. A. Shikunova, and V. N. Kurlov, Prog. Crystal Growth Charact. Mater. 61, 100523 (2021). https://doi.org/10.1016/j.pcrysgrow.2021.100523

    Article  CAS  Google Scholar 

  17. V. M. Kiiko and S. T. Mileiko, Composites Sci. Technol. 59, 1977 (1999). https://doi.org/10.1016/S0266-3538(99)00054-8

    Article  CAS  Google Scholar 

  18. Single Crystal Sapphire Optical Fiber (Photran, 2023). https://www.photran.com.

  19. Crystal Fiber Pioneers (MicroMaterials Tampa, FL, 2023). http://www.micromaterialsinc.com.

  20. High Power Laser Gain Module Taranis for Short Pulses Lasers (Fibercryst, 2023). https://www.fibercryst.com.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Stryukov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stryukov, D.O., Kiiko, V.M. & Kurlov, V.N. Effect of Surface Roughness on the Strength of Sapphire Fibers. J. Surf. Investig. 18, 84–89 (2024). https://doi.org/10.1134/S102745102401018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102401018X

Keywords:

Navigation