Skip to main content
Log in

On the Luminescence Properties of Carbon Dots Synthesized on the Basis of Nile Red Laser Dye

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The temperature dependence of the fluorescence of a colloidal solution of carbon dots in glycerol is studied. The dots are obtained by the pyrolysis of Nile Red laser dye using mesoporous silica as a matrix. To obtain a colloidal solution of individual dots, the matrix material is dissolved in hydrofluoric acid, followed by repeated cleaning of the dots with deionized water. The optical absorption spectrum of the dots demonstrates the presence in their composition of aromatic sp2-hybridized carbon atoms, as well as CO and CN molecular groups. The fluorescence spectrum of the colloidal solution when excited by light with λexc = 405 nm consists of two emission bands. It is established that the intensity I of the main (long-wavelength) fluorescence band of the synthesized dots increases with increasing solution temperature T in a wide temperature range from 270 to 415 K. The nature of the dependence I(T) indicates the occurrence of two competing processes: thermally induced fluorescence quenching and its enhancement. A three-level model of electronic states is considered, within which the observed temperature dependence of fluorescence is quantitatively described and the energies of nonradiative deactivation and activation of the emissive state are estimated. The nature of the electronic state responsible for the nonradiative activation of the emissive state is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Sharon and M. Sharon, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Hoboken, 2015).

    Book  Google Scholar 

  2. Y. Sun-P., B. Zhou, Y. Lin, W. Wang, K. A. FernandoS., P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.-Y. J. Xie, Am. Chem. Soc. 128, 7756 (2006). https://doi.org/10.1021/ja062677d

    Article  CAS  Google Scholar 

  3. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, and E. P. Gia, Chem. Mater. 20, 4539 (2008). https://doi.org/10.1021/cm800506r

    Article  CAS  Google Scholar 

  4. Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014). https://doi.org/10.1039/C4TC00988F

    Article  CAS  Google Scholar 

  5. M. A. Jhonsi and S. Thulasi, Chem. Phys. Lett. 661, 179 (2016). https://doi.org/10.1016/j.cplett.2016.08.081

    Article  CAS  Google Scholar 

  6. X. Wang, L. Cao, S. Yang-T., F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y.-P. Sun, Angew. Chem., Int. Ed. 49, 5310 (2010). https://doi.org/10.1002/anie.201000982

    Article  CAS  Google Scholar 

  7. H. Peng and J. Travas-Sejdic, Chem. Mater. 21, 5563 (2009). https://doi.org/10.1021/cm901593y

    Article  CAS  Google Scholar 

  8. R. Jelinek, Carbon Quantum Dots (Springer, Cham, 2017).

    Book  Google Scholar 

  9. S.-T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, and Y.-P. Sun, J. Phys. Chem. C 113, 18110 (2009). https://doi.org/10.1021/jp9085969

    Article  CAS  Google Scholar 

  10. F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, and S. Yang, Nano Today 11, 565 (2016). https://doi.org/10.1016/j.nantod.2016.08.006

    Article  CAS  Google Scholar 

  11. A. Sciortino, A. Cannizzo, and F. Messina, C 4, 67 (2018). https://doi.org/10.3390/c4040067

  12. E. H. Bogardus and H. B. Bebb, Phys. Rev. 176, 993 (1968). https://doi.org/10.1103/PhysRev.176.993

    Article  CAS  Google Scholar 

  13. M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, Phys. B (Amsterdam, Neth.) 376–377, 711 (2006). https://doi.org/10.1016/j.physb.2005.12.178

  14. Y. Ben, F. Liang, D. Zhao, X. Wang, J. Yang, Z. Liu, and P. Chen, Nanomaterials 11, 1023 (2021). https://doi.org/10.3390/nano11041023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. Kiba, Y. Mizushima, M. Igarashi, C. Huang-H., S. Samukawa, and A. Murayama, Nanoscale Res. Lett. 8, 223 (2013). https://doi.org/10.1186/1556-276X-8-223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. A. Elistratova and I. B. Zakharova, J. Mater. Sci: Mater. Electron. 33, 15554 (2022). https://doi.org/10.1007/s10854-022-08461-w

    Article  CAS  Google Scholar 

  17. Z. Sun, X. Li, Y. Wu, C. Wei, and H. Zeng, New J. Chem. 42, 4603 (2018). https://doi.org/10.1039/C7NJ04562J

    Article  CAS  Google Scholar 

  18. D. Chen, W. Wu, Y. Yuan, Y. Zhou, Z. Wan, and P. Huang, J. Mater. Chem. C 4, 9027 (2016). https://doi.org/10.1039/C6TC02853E

    Article  CAS  Google Scholar 

  19. Y. Dong, Y. Chen, X. You, W. Lin, C.-H. Lu, H.-H. Yang, and Y. Chi, Nanoscale 9, 1028 (2017). https://doi.org/10.1039/C6NR08444C

    Article  CAS  PubMed  Google Scholar 

  20. E. Y. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Y. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013). https://doi.org/10.1088/0957-4484/24/15/155601

    Article  CAS  PubMed  Google Scholar 

  21. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016). https://doi.org/10.1134/S1063783416120167

    Article  CAS  Google Scholar 

  22. E. A. Stepanidenko, I. D. Skurlov, P. D. Khavlyuk, D. A. Onishchuk, A. V. Koroleva, E. V. Zhizhin, I. A. Arefina, D. A. Kurdyukov, D. A. Eurov, V. G. Golubev, A. V. Baranov, A. V. Fedorov, E. V. Ushakova, and A. L. Rogach, Nanomaterials 12, 543 (2022). https://doi.org/10.3390/nano12030543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Cham, 2006).

    Book  Google Scholar 

  24. D. A. Kurdyukov, D. A. Eurov, M. K. Rabchinskii, A. V. Shvidchenko, M. V. Baidakova, D. A. Kirilenko, S. V. Koniakhin, V. V. Shnitov, V. V. Sokolov, P. N. Brunkov, A. T. Dideikin, Y. M. Sgibnev, L. Y. Mironov, D. A. Smirnov, A.Y. Vul’, and V. G. Golubev, Nanoscale 10, 13223 (2018). https://doi.org/10.1039/C8NR01900B

    Article  CAS  PubMed  Google Scholar 

  25. C. J. Reckmeier, Y. Wang, R. Zboril, and A. L. Rogach, J. Phys. Chem. C 120, 10591 (2016). https://doi.org/10.1021/acs.jpcc.5b12294

    Article  CAS  Google Scholar 

  26. Yang. Z., M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, and Y. Zhang, Nanoscale 6, 1890 (2014). https://doi.org/10.1039/C3NR05380F

  27. M. Liu, Nanoarchitectonics 1, 1 (2020). https://doi.org/10.37256/nat.112020124.1-12

    Article  Google Scholar 

  28. M. Hornum, P. Reinholdt, J. K. Zaręba, B. B. Jensen, D. Wüstner, M. Samoć, P. Nielsen, and J. Kongsted, Photochem. Photobiol. Sci. 19, 1382 (2020). https://doi.org/10.1039/D0PP00076K

    Article  CAS  PubMed  Google Scholar 

  29. A. Cser, K. Nagy, and L. Biczĝók, Chem. Phys. Lett. 360, 473 (2002). https://doi.org/10.1016/S0009-2614(02)00784-4

    Article  CAS  Google Scholar 

  30. F. B. Dias, Philos. Trans. R. Soc., Ser. A 373, 20140447 (2015). https://doi.org/10.1098/rsta.2014.0447

    Article  CAS  Google Scholar 

  31. H. Shibata, Jpn. J. Appl. Phys. 37, 550 (1998). https://doi.org/10.1143/JJAP.37.550

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Nelson.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, D.K., Starukhin, A.N., Kurdyukov, D.A. et al. On the Luminescence Properties of Carbon Dots Synthesized on the Basis of Nile Red Laser Dye. J. Surf. Investig. 18, 100–105 (2024). https://doi.org/10.1134/S1027451024010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010142

Keywords:

Navigation