Skip to main content
Log in

Light Absorption by Free Charge Carriers with Scattering Mechanisms in a Semiconductor Superlattice

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A theory is presented for the absorption of light by free charge carriers, taking into account the electron-phonon interaction in the semiconductor superlattices in a magnetic field. When the magnetic field is directed perpendicular to the surface of the semiconductor superlattice, the oscillations of the coefficient of the light absorption by free charge carriers in the case of scattering by polar phonons were determined, depending both on the magnetic field induction and on the frequency of the incident light and the resonance condition, within the framework of the second-order excitation theory. The dependence of the normalized coefficient αpol on hΩ at B = 3, 5, 10 T, as well as the dependence of αpol,max on the external magnetic field B at the miniband width Δ = 0.0024 eV, is given. The maximum value of αpol decreases as the external magnetic field increases. The external magnetic field affects the value of αpol,max and shifts the frequency hΩ towards high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. M. Jiang, H. Y. Xiao, S. M. Peng, L. Qiao, G. X. Yang, Z. J. Liu, and X. T. Zu, Sci. Rep. 10, 4862 (2020). https://doi.org/10.1038/s41598-020-61509-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Hubmann, V. V. Belkov, L. E. Golub, V. Yu. Kachorovskii, M. Drienovsky, J. Eroms, D. Weiss, and S. D. Ganichev, Phys. Rev. Res. 2, 033186 (2020). https://doi.org/10.1103/PhysRevResearch.2.033186

    Article  CAS  Google Scholar 

  3. H. Ghulam, C. Giuseppe, I. Rajibul, T. Artur, J. Jarosław, A. Carmine, and D. Tomasz, J. Phys. D. 55, 495301 (2022). https://doi.org/10.1088/1361-6463/ac984d

    Article  CAS  Google Scholar 

  4. A. Imran, J. Jiang, D. Eric, M. Noaman Zahid, M. Yousaf, and Z. H. Shah, Res. Phys. 9, 297 (2018). https://doi.org/10.1016/j.rinp.2018.02.016

    Article  Google Scholar 

  5. E. Deborah, J. Jianliang, A. Imran, M. Z. Noaman, and A. Ahmad Khan, Res. Phys. 13, 102246 (2019). https://doi.org/10.1016/j.rinp.2019.102246

    Article  Google Scholar 

  6. S. R. Figarova, H. I. Huseynov, and V. R. Figarov, Semicondutors 52, 853 (2018). https://doi.org/10.1134/S1063782618070084

    Article  CAS  Google Scholar 

  7. A. A. Perov and P. V. Pikunov, J. Exp. Theor. Phys. 132, 229 (2021). https://doi.org/10.1134/S1063776121080094

    Article  Google Scholar 

  8. A. O. Selskii, A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, Bull. Russ. Acad. Sci.: Phys. 82, 102 (2018). https://doi.org/10.3103/S1062873818010203

    Article  CAS  Google Scholar 

  9. A. M. Babanli, J. Low Temp. Phys. 209, 68 (2022). https://doi.org/10.1007/s10909-022-02762-4

    Article  CAS  Google Scholar 

  10. A. P. Silin, Sov. Phys. Usp. 31, 381 (1985).

    Article  Google Scholar 

  11. G. B. Ibragimov, Phys. Status Solidi B 231, 589 (2002). https://doi.org/10.1002/1521-3951(200206)231:2<589::AID-PSSB589>3.0.CO;2-K

    Article  CAS  Google Scholar 

  12. G. B. Ibragimov, Semicond. Phys. Quantum Electron. Optoelectron. 7, 283 (2004).

    Article  CAS  Google Scholar 

  13. G. B. Ibragimov, Semicond. Phys. Quantum Electron. Optoelectron. 5, 39 (2002).

    Article  CAS  Google Scholar 

  14. H. V. Phuc, T. C. Phong, and N. N. Hieu, Integr. Ferroelectr. 155, 1 (2014). https://doi.org/10.1080/10584587.2014.905063

    Article  CAS  Google Scholar 

  15. K. S. Bhargavi, S. Patil, and S. S. Kubakaddi, J. Appl. Phys. 118, 044308 (2014).

    Article  Google Scholar 

  16. V. L. Gurevich, D. A. Parshin, and K. E. Shtengel, Fiz. Tverd. Tela 30, 1466 (1988).

    CAS  Google Scholar 

  17. G. B. Ibragimov, R. Z. Ibayeva, J. Non-Oxide Glasses 12, 31 (2020). https://chalcogen.ro/31_IbragimovGB.pdf.

  18. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. B. Ibragimov or R. Z. Ibaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibragimov, G.B., Ibaeva, R.Z. Light Absorption by Free Charge Carriers with Scattering Mechanisms in a Semiconductor Superlattice. J. Surf. Investig. 18, 116–120 (2024). https://doi.org/10.1134/S1027451024010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010099

Keywords:

Navigation