Skip to main content
Log in

Mechanisms of the Formation and Accumulation of Misorientations in Deformable Metals and Alloys

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The formation of misoriented substructures in plastically deformable metal materials is theoretically studied. Expressions are obtained for the intensity of the accumulation of low-angle and high-angle misorientation boundaries. Within the framework of a mathematical model of shear plastic deformation and hardening, numerical calculations of the dependences of the average characteristics of an imperfect medium on the degree of deformation under conditions of uniaxial compression with a constant strain rate at room temperature are performed. It is shown that the intensity of the generation of low-angle tilt walls depends significantly on the scenario of changes in the density of jogs on the screw segments of dislocation loops emitted by dislocation sources. The main mechanism for the formation of low-angle walls is the rearrangement of clusters of edge segments of dislocation loops into tilt dislocation walls under the influence of flows of interstitial atoms generated by moving screw segments. It is assumed that low-angle walls merge into one until the total misorientation angle of the merged walls reaches a critical value of about 10°, after which the distance between dislocations in the wall decreases to the corresponding critical value and the further penetration of individual dislocations into the wall becomes impossible. The expression for the intensity of the formation of high-angle boundaries is obtained as a consequence of continuation of the work of dislocation sources and the formation of clusters of low-angle walls, the total energy of which is higher than the energy of the equilibrium high-angle boundary at the same misorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. L. Hoffmanner, Metal Forming Interrelation between Theory and Practice, in Proc. Symp. on the Relation Between Theory and Practice of Metal Forming, Cleveland, 1970 (Springer, 2012), p. 503

  2. I. I. Novikov and V. K. Portnoi, Superplasticity of Alloys with Ultrafine Grains (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  3. O. M. Smirnov, Pressure Processing of Metals in a State of Superplasticity (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  4. F. Z. Utyashev and G. I. Raab, Scientific Foundations of Deformation Technologies for the Formation of Ultrafine-Grained and Nanostructured Bulk Materials (Infra-Inzh., Vologda, 2021) [in Russian].

    Google Scholar 

  5. A. P. Zhilyaev, A. I. Pshenichnyuk, F. Z. Utyashev, and G. I. Raab, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials (Elsevier, Amsterdam, 2020).

    Google Scholar 

  6. F. Z. Utyashev, G. I. Raab, and V. A. Valitov, Deformation Nanostructuring of Metals and Alloys (Naukoemk. Tekhnol., St. Petersburg, 2020) [in Russian].

    Google Scholar 

  7. V. V. Rybin, Large Plastic Deformations and Destruction of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  8. G. F. Korznikova, G. R. Khalikova, S. Yu. Mironov, A. F. Aletdinov, E. A. Korznikova, Kon’T. N. kova, and M. M. Myshlyaev, Phys. Mesomech. 25, 318 (2022). https://doi.org/10.1134/S1029959922040051

    Article  Google Scholar 

  9. F. U. Enikeev, Russ. J. Non-Ferrous Met. 49, 34 (2008).

    Article  Google Scholar 

  10. A. N. Vargin, G. S. Burkhanov, Zung Nguen Suan, and V. I. Pol’kin, Mezhdunar. Nauchn. Zh., No. 6, 65 (2013).

  11. Ya. I. Rudaev, Nauchno-Tekh. Ved. St. Petersb. Gos. Tekh. Univ., No. 2, 57 (2005).

  12. V. N. Perevezentsev and Yu. V. Svirina, Tech. Phys. 43, 1436 (1998).

    Article  CAS  Google Scholar 

  13. K. Higashi, T. G. Nieh, M. Mabuchi, and J. Wadsworth, Scr. Metall. Mater. 32, 1079 (1995).

    Article  Google Scholar 

  14. M. Demirtas, M. Kawasaki, H. Yanar, and G. Purcek, Mater. Sci. Eng., A 730, 73 (2018) https://doi.org/10.1016/j.msea.2018.05.104

    Article  CAS  Google Scholar 

  15. M. Demirtas, G. Purcek, H. Yanar, Z. J. Zhang, Z. F. Zhang, J. Alloys Compd. 663, 775 (2016. https://doi.org/10.1016/j.jallcom.2015.12.142

    Article  CAS  Google Scholar 

  16. V. A. Starenchenko, D. N. Cherepanov, Yu. V. Solov’eva, and L. E. Popov, Russ. Phys. J. 52, 398 (2009).

    Article  CAS  Google Scholar 

  17. V. A. Starenchenko, D. N. Cherepanov, and O. V. Selivanikova, Russ. Phys. J. 57, 139 (2014).

    Article  CAS  Google Scholar 

  18. D. Kuhlmann-Wilsdorf, in Physical Metallurgy, Ed. by R. W. Cahn, 2nd ed. (North-Holland, Amsterdam, 1970), chap. 13, p. 787.

    Google Scholar 

  19. V. A. Starenchenko, D. N. Cherepanov, and M. I. Slobodskoi, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9/2, 108 (2009).

  20. V. R. Parameswaran and J. Weertman, Met. Trans., 2, 1233 (1971).

    Article  CAS  Google Scholar 

  21. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, Phys. Met. Metallogr. 116, 79 (2015).

    Article  Google Scholar 

  22. S. Mader, A. Seeger, Acta Metall. 8, 513 (1960).

    Article  CAS  Google Scholar 

  23. N. Staubwasser, Acta Metall. 7, 43 (1959).

    Article  CAS  Google Scholar 

  24. A. N. Belyakov, Phys. Met. Metallogr. 10, 390 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement FEMN-2023-0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Cherepanov or Yu. V. Solov’eva.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Yu. Ryzhkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, D.N., Solov’eva, Y.V. & Starenchenko, V.A. Mechanisms of the Formation and Accumulation of Misorientations in Deformable Metals and Alloys. J. Surf. Investig. 18, 74–83 (2024). https://doi.org/10.1134/S1027451024010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010075

Keywords:

Navigation