Skip to main content
Log in

Shear Bands in Amorphous Alloys and Their Role in the Formation of Nanocrystals

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The processes of evolution of the structure and surface morphology of Al87Ni8La5 and Fe76Si13B11 amorphous alloys under deformation are studied. It is shown that deformation occurs through the formation and propagation of shear bands, which form steps when they reach the surface. The formation of nanocrystals in the shear bands is noted. It is shown that steps on the surface are formed under the combined action of several elementary shear bands. The shear bands have a variable thickness in the range from 5 to 20 nm. An elementary step has a thickness of about 15 nm. The shear bands can be combined into zones. The transverse size of the zones is about 1 μm. The formation of nanocrystals in the zones can lead to anisotropy in the orientational position of nanocrystals in an amorphous matrix. With an increase in the degree of deformation, nanocrystals are formed not only in the shear bands, but also in areas adjacent to them. There is a difference in the kinetics of the formation of nanocrystals in an alloy based on aluminum and iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. A. Inoue, T. Ochiai, Y. Horio, and T. Masumoto, Mater. Sci. Eng. 649, 649 (1994). https://doi.org/10.1016/0921-5093(94)90286-0

    Article  Google Scholar 

  2. G. He, W. Löser, and J. Eckert, Scr. Mater. 48, 1531 (2003). https://doi.org/10.1016/S1359-6462(03)00128-3

    Article  CAS  Google Scholar 

  3. Louzguine-D. V. Luzgin, I. Seki, S. V. Ketov, L. V. Louzguina-Luzgina, V. I. Polkin, N. Chen, H. Fecht, A. N. Vasiliev, and H. Kawaji, J. Non-Cryst. Solids 419, 12 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.03.018

    Article  CAS  Google Scholar 

  4. Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149

    Article  CAS  Google Scholar 

  5. A. Aronin, A. Budchenko, D. Matveev, E. Pershina, V. Tkatch, and G. Abrosimova, Rev. Adv. Mater. Sci. 46, 53 (2016).

    CAS  Google Scholar 

  6. Y. M. Chen, T. Ohkubo, T. Mukai, and K. Hono, J. Mater. Res. 24, 1 (2009). https://doi.org/10.1557/jmr.2009.0001

    Article  Google Scholar 

  7. A. L. Greer, Y. Q. Cheng, and E. Ma, Mater. Sci. Eng., R 74, 71 (2013). https://doi.org/10.1016/j.mser.2013.04.001

  8. A. Hassanpour, M. Vaidya, S. V. Divinski, and G. Wilde, Acta Mater. 209, 116785 (2021). https://doi.org/10.1016/j.actamat.2021.116785

    Article  CAS  Google Scholar 

  9. H. Rösner, M. Peterlechner, C. Kübel, V. Schmidt, and G. Wilde, Ultramicroscopy 142, 1 (2014). https://doi.org/10.1016/j.ultramic.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  10. F. A. Davani, S. Hilke, H. Rösner, D. Geissler, A. Gebert, and G. Wilde, J. Alloys Compd. 837, 155494 (2020). https://doi.org/10.1016/j.jallcom.2020.155494

    Article  CAS  Google Scholar 

  11. I. Binkowski, G. P. Shrivastav, J. Horbach, S. V. Divinski, and G. Wilde, Acta Mater. 109, 330 (2016). https://doi.org/10.1016/j.actamat.2016.02.061

    Article  CAS  Google Scholar 

  12. A. S. Aronin and D. V. Louzguine-Luzgin, Mech. Mater. 113, 19 (2017). https://doi.org/10.1016/j.mechmat.2017.07.007

    Article  Google Scholar 

  13. E. Yu. Postnova, G. E. Abrosimova, and A. S. Aronin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1117 (2021). https://doi.org/10.1134/S1027451021060161

    Article  CAS  Google Scholar 

  14. A. S. Aronin, O. I. Aksenov, D. V. Matveev, E. A. Pershina, and G. E. Abrosimova, Mater. Lett. 344, 134478 (2023). https://doi.org/10.1016/j.matlet.2023.134478

    Article  CAS  Google Scholar 

  15. A. M. Glezer, D. V. Louzguine-Luzgin, I. A. Khriplivets, R. V. Sundeev, D. V. Gunderov, A. I. Bazlov, and Y. S. Pogozhev, Mater. Lett. 256, 126631 (2019). https://doi.org/10.1016/j.matlet.2019.126631

    Article  CAS  Google Scholar 

  16. B. Mironchuk, G. Abrosimova, S. Bozhko, E. Pershina, and A. Aronin, J. Non-Cryst. Solids 577, 121279 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121279

    Article  CAS  Google Scholar 

  17. B. Mironchuk, G. Abrosimova, S. Bozhko, A. Drozdenko, E. Postnova, and A. Aronin, Mater. Lett. 273, 127941 (2020). https://doi.org/10.1016/j.matlet.2020.127941

    Article  CAS  Google Scholar 

  18. R. Maaß, K. Samver, W. Arnold, and C. F. Volkert, Appl-. Phys. Lett. 105, 171902 (2014). https://doi.org/10.1063/1.4936388

    Article  CAS  Google Scholar 

  19. C. Liu, V. Roddatis, P. Kenesei, and R. Maaß, Acta Mater. 140, 206 (2017). https://doi.org/10.1016/j.actamat.2017.08.032

    Article  CAS  Google Scholar 

  20. H. S. Shahabi, S. Scudino, I. Kaban, M. Stoica, B. Escher, S. Menzel, G. B. M. Vaughan, U. Kühn, and J. Eckert, Acta Mater. 111, 187 (2016). https://doi.org/10.1016/j.actamat.2016.03.035

    Article  CAS  Google Scholar 

  21. J. Pan, Q. Chen, L. Liu, and Y. Li, Acta Mater. 59, 5146 (2011). https://doi.org/10.1016/j.actamat.2011.04.047

    Article  CAS  Google Scholar 

  22. V. Schmidt, H. Rösner, M. Peterlechner, and G. Wilde, Phys. Rev. Lett. 115, 035501 (2015). https://doi.org/10.1103/PhysRevLett.115.035501

    Article  CAS  PubMed  Google Scholar 

  23. G. Abrosimova, A. Aronin, and A. Budchenko, Mater. Lett. 139, 194 (2015). https://doi.org/10.1016/j.matlet.2014.10.076

    Article  CAS  Google Scholar 

  24. G. Abrosimova, A. Aronin, D. Fokin, N. Orlova, and E. Postnova, Mater. Lett. 252, 114 (2019). https://doi.org/10.1016/j.matlet.2019.05.099

    Article  CAS  Google Scholar 

  25. Z. H. Huang, J. F. Li, Q. L. Rao, and Y. H. Zhou, Mater. Sci. Eng., A 489, 380 (2008). https://doi.org/10.1016/j.msea.2007.12.027

    Article  CAS  Google Scholar 

  26. E. Nunes, R. D. Pereira, J. C. C. Freitas, E. C. Passamani, C. Larica, A. A. R. Fernandes, and F. H. Sanchez, J. Mater. Sci. 41, 1649 (2006). https://doi.org/10.1007/s10853-005-4229-0

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to the Russian Science Foundation for support of this work (project RNF no. 23-22-00122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Aronin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronin, A.S., Volkov, N.A. & Pershina, E.A. Shear Bands in Amorphous Alloys and Their Role in the Formation of Nanocrystals. J. Surf. Investig. 18, 27–33 (2024). https://doi.org/10.1134/S1027451024010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010051

Keywords:

Navigation