Skip to main content
Log in

Tetraoxa[8]circulene Monolayer as Hydrogen Storage Material: Model with Boys–Bernardi Corrections Within Density Functional Theory

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The parameters of molecular hydrogen adsorption on a tetraoxa[8]circulene monolayer were studied using the density functional theory with dispersion interaction corrections (semi-empirical and analytical). The calculations were carried out using two different approaches to the system wave function representation: atomic-like orbital basis set and plane wave basis. Utilizing a less computationally expensive pseudo-atomic basis, it is possible to obtain results for molecular hydrogen adsorption consistent with values calculated with plane waves if the atomic-like basis is optimized and basis set superposition error is corrected for both hydrogen binding energy and geometrical characteristics. Otherwise, the H2 binding energy will be overestimated by 4–6 times (sometimes even more, by 20); and the hydrogen–monolayer distance will be underestimated by 10–20%. The obtained optimized parameters of the pseudo-atomic basis set can be used for further study of the modified forms of the tetraoxa[8]circulene monolayer. Moreover, our calculations showed that the hydrogen binding to a pristine tetraoxa[8]circulene monolayer is predominantly van der Waals with an energy of 60–90 meV, which is several times less than the desired range of 200–600 meV. To achieve such values, it will be necessary to modify the surface of the monolayer, creating more active sorption cites, for example, by decorating it with metals or applying structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. Simanullang and L. Prost, Int. J. Hydrogen Energy 47, 29808 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.301

    Article  CAS  Google Scholar 

  2. Y. Wang, P. Yang, L. Zheng, X. Shi, and H. Zheng, Energy Storage Mater. 26, 349 (2020). https://doi.org/10.1016/j.ensm.2019.11.006

    Article  Google Scholar 

  3. E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, Phys. Rev. B 66, (205101 (2002). https://doi.org/10.1103/PhysRevB.66.205101

  4. A. Ferre-Vilaplana, J. Chem. Phys. 122, 104709 (2005). https://doi.org/10.1063/1.1859278

    Article  CAS  PubMed  Google Scholar 

  5. Vilela D. Oliveira, J. Laun, M. F. Peintinger, and T. Bredow, J. Comput. Chem. 40, 2364 (2019). https://doi.org/10.1002/jcc.26013

    Article  CAS  Google Scholar 

  6. L. V. Begunovich, A. V. Kuklin, G. V. Baryshnikov, R. R. Valiev, and H. Ågren, Nanoscale 13, 4799 (2021). https://doi.org/10.1039/D0NR08554E

    Article  CAS  PubMed  Google Scholar 

  7. P. W. Fritz, T. Chen, T. Ashirov, A. D. Nguyen, M. Dincă, and A. Coskun, Angew. Chem., Int. Ed. 61, e202116527 (2022). https://doi.org/10.1002/anie.202116527

    Article  CAS  Google Scholar 

  8. G. V. Baryshnikov, B. F. Minaev, N. N. Karaush, V. A. Minaeva, RSC Adv. 4, 25843 (2014). https://doi.org/10.1039/c4ra02693d

  9. N. Karaush-Karmazin, G. Baryshnikov, V. Minaeva, O. Panchenko, and B. Minaev, Comput. Theor. Chem. 1217, 113900 (2022). https://doi.org/10.1016/j.comptc.2022.113900

    Article  CAS  Google Scholar 

  10. E. Artacho, E. Anglada, O. Diéguez, J. D. Gale, A. García, J. Junquera, R. M. Martin, P. Ordejón, J. M. Pruneda, D. Sánchez-Portal, and J. M. Soler, J. Phys.: Condens. Matter 20, 064208 (2008). https://doi.org/10.1088/0953-8984/20/6/064208

    Article  CAS  PubMed  Google Scholar 

  11. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  12. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  13. O. D. Salahdin, H. Sayadi, R. Solanki, R. M. R. Parra, M. Al-Thamir, A. T. Jalil, S. E. Izzat, A. T. Hammid, L. A. B. Arenas, and E. Kianfar, Appl. Phys. A 128, 703 (2022). https://doi.org/10.1007/s00339-022-05789-2

    Article  CAS  Google Scholar 

  14. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  15. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  17. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). https://doi.org/10.1103/PhysRevLett.92.246401

    Article  CAS  PubMed  Google Scholar 

  18. K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014). https://doi.org/10.1103/PhysRevB.89.035412

    Article  CAS  Google Scholar 

  19. Abinit’s Pseudo Database (Fritz-Haber-Inst., 2023). https://departments.icmab.es/leem/SIESTA_MATERIAL/Databases/Pseudopotentials/periodictable-intro.html. Accessed May 20, 2023.

  20. S. A. Sozykin, V. P. Beskachko, and G. P. Vyatkin, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Mekh. Fiz. 7 (3), 78 (2015).

    Google Scholar 

  21. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  22. E. V. Anikina and V. P. Beskachko, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Mekh. Fiz. 12, 55 (2020). https://doi.org/10.14529/mmph200107

    Article  Google Scholar 

  23. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M. Soler, Phys. Status Solidi B 215, 809 (1999). https://doi.org/10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0

    Article  CAS  Google Scholar 

  24. E. Anikina, S. R. Naqvi, H. Bae, H. Lee, W. Luo, R. Ahuja, and T. Hussain, Int. J. Hydrogen Energy 19, 10654 (2022). https://doi.org/10.1016/j.ijhydene.2022.01.126

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. FENU-2023-0011 “Fundamentals of Safe Hydrogen Technologies” from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Anikina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikina, E.V., Babailova, D.V., Zhilin, M.S. et al. Tetraoxa[8]circulene Monolayer as Hydrogen Storage Material: Model with Boys–Bernardi Corrections Within Density Functional Theory. J. Surf. Investig. 18, 19–26 (2024). https://doi.org/10.1134/S102745102401004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102401004X

Keywords:

Navigation