Skip to main content
Log in

Effect of Irradiation with a Pulsed Electron Beam on the Defect Structure Formation and the Properties of the Surface Layer of Zr–Nb–H System Alloys

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of pulsed electron beam (PEB) irradiation modes on the structure and defect formation and the mechanical strength in the near-surface layer of a Zr–1 wt % Nb alloy with a hydrogen content of 0.0016 and 0.21 wt % (hereinafter, Zr–1Nb and Zr–1Nb–0.21H alloys, respectively) has been studied. By using optical and electron microscopy, as well as X-ray diffraction analysis, it was established that irradiation of the Zr–1Nb and Zr–1Nb–0.21H alloys in the mode without surface melting did not change the morphology and phase composition of their structure. After irradiation with a PEB in the surface melting mode, the dissolution of particles of the β-Nb phase and the formation of a lamellar structure were observed in the near-surface layer of the alloys regardless of the hydrogen concentration. It was shown by positron annihilation that irradiation in the mode without surface melting led to the formation of dislocations and vacancies in the near-surface layer. In the near-surface layer of the alloys irradiated with a PEB in the surface melting mode, in addition to dislocations and vacancies, defects of the “vacancy-impurity” type were formed. The presence of hydrogen in the alloy contributed to the formation of complex hydrogen-vacancy complexes in the surface layer during irradiation with a PEB. The mechanical strength of the near-surface layer of the alloys was determined depending on the mode of irradiation with a PEB. It is shown that the formation of a lamellar structure in the near-surface layer led to an increase in the strength characteristics of the Zr–1Nb and Zr–1Nb–0.21H alloys under tension in the temperature range of 293–673 K by 25–10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. L. I. Kuksenova, M. S. Alekseeva, and M. A. Gress, Bull. Sci. Tech. Dev. 138, 15 (2019). https://doi.org/10.18411/vntr2019-138-3

    Article  Google Scholar 

  2. V. E. Panin, V. M. Fomin, and V. M. Titov, Fiz. Mezomekh. 6 (3), 5 (2003).

    CAS  Google Scholar 

  3. A. Ya. Levi, K. A. Talala, V. S. Krasnikov, and A. P. Yalovets, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mashinostr. 16 (1), 28 (2016). https://doi.org/10.14529/engin160103

    Article  Google Scholar 

  4. S. Hao, C. Dong, M. Li, X. Zhang, and P. Wu, Int. J. Mod. Phys. B 23, 1713 (2009). https://doi.org/10.1142/S0217979209061512

    Article  ADS  CAS  Google Scholar 

  5. J. Ma, K. Zhang, X. Zhang, and Y. Wang, J. Mater. Sci. Chem. Eng. 4 (12), 46 (2016). https://doi.org/10.4236/msce.2016.412006

    Article  CAS  Google Scholar 

  6. C. Tang, M. Stueber, H. J. Seifert, and M. Steinbrueck, Corros. Rev. 35, 141 (2017). https://doi.org/10.1515/corrrev-2017-0010

    Article  CAS  Google Scholar 

  7. I. P. Chernov, N. S. Pushilina, E. V. Berezneeva, A. M. Lider, and S. V. Ivanova, Tech. Phys. 58, 1280 (2013). https://doi.org/10.1134/S1063784213090107

    Article  CAS  Google Scholar 

  8. A. D. Pogrebnyak and O. P. Kulmentieva, Phys. Eng. Surf. 1, 108 (2003).

    Google Scholar 

  9. S. Mulki, P. K. Pujari, D. Srivastava, I. Samajdar, G. K. Dey, and S. Sharma, Phys. Status Solidi C 6, 2370 (2009). https://doi.org/10.1002/pssc.200982141

    Article  ADS  CAS  Google Scholar 

  10. Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou and Y. L. Hao, Acta Mater. 113, 56 (2016). https://doi.org/10.1016/j.actamat.2016.04.029

    Article  ADS  CAS  Google Scholar 

  11. R. S. Laptev, A. M. Lider, Y. S. Bordulev, V. N. Kudiyarov, and D. V. Gvozdyakov, Key Eng. Mater. 683, 256 (2016). doi 10.4028/www.scientific.net/KEM.683.256

  12. C. Varvenne, O. Mackain, L. Proville and E. Clouet, Acta Materialia 102, 56 (2016). https://doi.org/10.1016/j.actamat.2015.09.019

    Article  ADS  CAS  Google Scholar 

  13. J. Size, I. Procházka, R. Kužel, F. Bečvář, M. Cieslar, G. Brauer, W. Anand, R. Kirchheim, and A. Pundt, Mater. Sci. Forum 445–446, 60 (2004). https://doi.org/10.1016/j.jallcom.2015.01.197

    Article  CAS  Google Scholar 

  14. N. N. Koval’ and Y. F. Ivanov, Russ. Phys. J. 51, 505 (2008). https://doi.org/10.1007/s11182-008-9073-7

    Article  CAS  Google Scholar 

  15. S.A. Saltikov, Stereometric Metallography (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  16. G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956). https://doi.org/10.1080/14786435608238074

    Article  ADS  CAS  Google Scholar 

  17. P. M. Sargent and M. F. Ashby, Scr. Metall. 16, 1415 (1982). https://doi.org/10.1016/0036-9748(82)90439-2

    Article  CAS  Google Scholar 

  18. P. S. Chowdhury, P. Mukherjee, N. Gayathri, M. Bhattacharya, A. Chatterjee, P. Barat, and P. M. G. Nambissan, Bull. Mater. Sci. 34, 507 (2011). https://doi.org/10.1007/s12034-011-0120-6

    Article  CAS  Google Scholar 

  19. A. M. Lider, Doctoral Dissertation in Engineering (Natl. Res. Tomsk Polytech. Univ., Tomsk, 2017).

  20. R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer, Heidelberg, 1999).

    Book  Google Scholar 

  21. K. Siemek and J. Dryzek, Acta Phys. Pol., A 125, 833 (2014). https://doi.org/10.12693/APhysPolA.125.833

    Article  ADS  CAS  Google Scholar 

  22. E. N. Stepanova, G. P. Grabovetskaya, I. P. Mishin and A. D. Teresov, and M. S. Syrtanov, AIP Conf. Proc. 2051, 020295 (2018). https://doi.org/10.1063/1.5083538

    Article  CAS  Google Scholar 

  23. J. M. C. Robles, E. Ogando, and F. Plazaola, J. Phys.: Conf. Ser. 265, 012006 (2011). https://doi.org/10.1088/1742-6596/265/1/012006

    Article  CAS  Google Scholar 

  24. S. Mulki, P. K. Pujari, D. Srivastava, I. Samajdar, G. K. Dey, V. D. Hiwarkar, and S. Sharma, Phys. Status Solidi C 6, 2352 (2009). https://doi.org/10.1002/pssc.200982140

    Article  ADS  CAS  Google Scholar 

  25. T. E. M. Staab, R. KrauseRehberg, and B. Kieback, J. Mater. Sci. 34, 833 (1999). https://doi.org/10.1023/A:1004666003732

    Article  Google Scholar 

  26. Y. S. Bordulev, K. Lee, R. S. Laptev, V. N. Kudiiarov, and A. M. Lider, Defect Diffus. Forum 373, 138 (2017). doi 10.4028/www.scientific.net/DDF.373.138. 2017

  27. O. K. Alekseeva, V. N. Bykov, V. A. Levdik, V. P. Shantorovich, and N. F. Miron, Preprint No. FEI-1037 (Phys. Energy Inst., Obninsk, 1980).

  28. E. V. Collings, The Physical Metallurgy of Titanium A-lloys (Am. Soc. Met., Metals Park, 1984; Metallurgy, Moscow, 1988).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-29-00156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Stepanova or G. P. Grabovetskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanova, E.N., Grabovetskaya, G.P., Kruglyakov, M.A. et al. Effect of Irradiation with a Pulsed Electron Beam on the Defect Structure Formation and the Properties of the Surface Layer of Zr–Nb–H System Alloys. J. Surf. Investig. 17 (Suppl 1), S51–S59 (2023). https://doi.org/10.1134/S1027451023070509

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070509

Keywords:

Navigation