Skip to main content
Log in

Comprehensive Study of the Impact of Iron-Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comprehensive study of the impact of irradiation on the nanostructure of oxide dispersion-strengthened steels, namely, Eurofer ODS, 10Cr ODS, and KP-3 ODS, using atom-probe tomography and transmission electron microscopy is presented. Samples of these steels were irradiated with Fe2+ ions at 500°C up to a radiation-damage dose of 100 dpa within the microscopic-analysis region. The study revealed that in irradiated Eurofer ODS, the number density of oxide particles remained within the margin of error, whereas in 10Cr ODS and KP-3 ODS, it decreased several fold. Concurrently, the number density of Cr–Y–O clusters decreased in Eurofer ODS, while in 10Cr ODS and KP-3 ODS, the number density of Cr–Y–O–Ti clusters increased. Observed changes in enrichments of the core elements of clusters (Cr, Y, O, Ti), as well as variations in the concentrations of these elements within the matrix between the initial and irradiated states, indicate interactions between the oxide and cluster subsystems during irradiation. These interactions lead to stabilization of the oxide subsystem in Eurofer ODS and the formation of new clusters in other materials through the atomic exchange of cluster constituent elements with the material matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. P. Yvon and F. Carre, J. Nucl. Mater. 385, 217 (2009). http://doi.org./10.1134/S1063778822120018

    Article  ADS  CAS  Google Scholar 

  2. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, J. Nucl. Mater. 341, 103 (2005). http://doi.org./10.1016/j.jnucmat.2005.01.017

    Article  ADS  CAS  Google Scholar 

  3. S. Ukai, T. Okuda, M. Fujiwara, T. Kobayashi, S. Mizuta, and H. Nakashima, J. Nucl. Sci. Technol. 39, 872 (2002). http://doi.org./10.1080/18811248.2002.9715271

    Article  CAS  Google Scholar 

  4. D. T. Hoelzer, J. Bentley, M. A. Sokolov, M. K. Miller, G. R. Odette, and M. J. Alinger, J. Nucl. Mater. 367–370, 166 (2007). http://doi.org./10.1016/j.jnucmat.2007.03.151

    Article  ADS  Google Scholar 

  5. S. Ukai and M. Fujiwara, J. Nucl. Mater. 307–311, 749 (2002). http://doi.org./10.1016/S0022-3115(02)01043-7

    Article  ADS  Google Scholar 

  6. A. A. Aleev, N. A. Iskandarov, M. Klimenkov, R. Lindau, A. Möslang, A. A. Nikitin, S. V. Rogozhkin, P. Vladimirov, and A. G. Zaluzhnyi, J. Nucl. Mater. 409, 65 (2011). http://doi.org./10.1016/j.jnucmat.2010.09.008

    Article  ADS  CAS  Google Scholar 

  7. S. V. Rogozhkin, A. A. Bogachev, D. I. Kirillov, A. A. Nikitin, N. N. Orlov, A. A. Aleev, A. G. Zaluzhnyi, and M. A. Kozodaev, Phys. Met. Metallogr. 115, 1259 (2014). https://doi.org/10.1134/S0031918X14120060

    Article  ADS  Google Scholar 

  8. E. Gil, N. Ordás, García-C. Rosales, I. Iturriza, Fusion Eng. Des. 98–99, (1973 (2015). http://doi.org./10.1016/j.fusengdes.2015.06.010

  9. M. J. Swenson, C. K. Dolph, and J. P. Wharry, J. Nucl. Mater. 479, 426 (2016). http://doi.org./10.1016/j.jnucmat.2016.07.022

    Article  ADS  CAS  Google Scholar 

  10. S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M. Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, and S. Seils, Nucl. Mat. Energy 9, 66 (2016). http://doi.org./10.1016/j.nme.2016.06.011

  11. S. V. Rogozhkin, A. A. Bogachev, A. A. Nikitin, A. L. Vasiliev, M. Yu. Presnyakov, M. Tomut, and Ch. Trautmann, Nucl. Instrum. Methods Phys. Res., Sect. B 486, 1 (2021). http://doi.org./10.1016/j.nimb.2020.10.017

  12. M. Klimiankou, R. Lindau, A. Moslang, J. Nucl. Mater. 329, 347 (2004). http://doi.org./10.1134/S1063778818120049

    Article  ADS  Google Scholar 

  13. J. P. Wharry, M. J. Swenson, and K. H. Yano, J. Nucl. Mater. 486, 11 (2017). http://doi.org./10.1016/j.jnucmat.2017.01.009

    Article  ADS  CAS  Google Scholar 

  14. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, V. V. Khoroshilov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1425 (2020). http://doi.org./10.1134/S1063778820100191

    Article  CAS  Google Scholar 

  15. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, Khoroshilov V. V., T. V. Kulevoy, P. A. Fedin, K. E. Pryanishnikov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. G. Zaluzhnyi, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1519 (2020). http://doi.org./10.1134/S1063778820100208

    Article  CAS  Google Scholar 

  16. S. V. Rogozhkin, A. V. Klauz, A. A. Bogachev, A. A. Khomich, P. A. Fedin, and O. A. Raznitsyn, Phys. At. Nucl. 85, 1988 (2022). http://doi.org./10.1134/S1063778822120018

    Article  Google Scholar 

  17. S. V. Rogozhkin, A. V. Klauz, A. A. Bogachev, A. A. Khomich, P. A. Fedin, and O. A. Raznitsyn, Phys. At. Nucl., 86, No. 9, 1 (2023). http://doi.org./10.1134/S1063778823090181

  18. S. V. Rogozhkin, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov, Instrum. Exp. Tech. 60, 428 (2017). http://doi.org./10.1134/S1061934817140118

    Article  Google Scholar 

  19. O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, and S. V. Rogozhkin, J. Anal. Chem. 72, 1404 (2017). http://doi.org./10.1134/S1061934817140118

    Article  CAS  Google Scholar 

  20. A. A. Aleev, S. V. Rogozhkin, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, A. A. Nikitin, N. A. Iskandarov, O. A. Korchuganova, and S. E. Kirillov Certificate of state registration of a computer program No. 2018661876 (2018). https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/702/112/ %D0%98%D0%97-02702112- 00001/document.pdf.

  21. M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer, New York, 2000). https://doi.org./10.1046/j.1365-2818.2001.00847.x

    Book  Google Scholar 

  22. G. E. Lucas, J. Nucl. Mater., 206, 287 (1993). https://doi.org./10.1016/0022-3115(94)90018-3

    Article  ADS  CAS  Google Scholar 

  23. Y. Ijiri, N. Oono, S. Ukai, S. Ohtsuka, T. Kaito, and Y. Matsukawa, Nucl. Mater. Energy 9, 378 (2016). https://doi.org./10.1016/j.nme.2016.06.014

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P. Vladimirov from the Karlsruhe Institute of Technology (Germany), Prof. A. Kimura from Kyoto University (Japan), and Dr. T.K. Kim (Republic of Korea) from the Korea Atomic Energy Research Institute for providing the samples of ODS steels.

Irradiation and preparation of samples were performed using equipment of the KAMICS Center for Collective Use (http://kamiks.itep.ru/) of the National Research Centre “Kurchatov Institute.” The preparation of the samples using focused-ion-beam methods and analysis using transmission electron microscopy were performed using equipment of the resource “Structural Diagnostics of Materials” of the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences (https://kif.ras.ru/ckp/contacts/).

Funding

The study was supported by the Russian Science Foundation, project no. 22-29-01279.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Klauz, A.V., Bogachev, A.A. et al. Comprehensive Study of the Impact of Iron-Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels. J. Surf. Investig. 17 (Suppl 1), S289–S299 (2023). https://doi.org/10.1134/S1027451023070443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070443

Keywords:

Navigation