Skip to main content
Log in

Calculation of the Reflection Coefficient of Multilayer X-Ray Mirrors for Sources Based on Inverse Compton Scattering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

It is shown that the use of traditional multilayer X-ray Pt/C mirrors with a periodic gradient only along the direction of propagation of the central X-ray beam, so-called Goebel mirrors, with a source based on the inverse Compton effect, leads to a significant loss of reflected intensity. The efficiency of such mirrors will be about 2% of the total power of the source. To solve this problem, a new approach is proposed based on the use of a set of multilayer mirror strips with different profiles, widths, and periods determined by the parameters of the incident radiation. This work describes the method proposed by us for calculating the period distribution over the mirror surface. The calculation parameters are: the angular dependence of the source photon energy, the mirror size, the distance from the source to the center of the mirror, and the central angle of incidence of radiation on the mirror. The developed method for calculating the periods of a multilayer X-ray mirror is demonstrated by the example of solving a specific problem of X-ray reflection from a source based on the inverse Compton effect, considered earlier in publications. It is noted that in order to apply the technique described in the article when constructing mirrors, it will be necessary to resort to lithography, since obtaining a set of mirrors described in the work using magnetron sputtering seems to be extremely difficult to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. M. M. Barysheva, I. V. Malyshev, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, and N. I. Svechnikov, Quantum Electron. 50, 401 (2020).

    Article  ADS  CAS  Google Scholar 

  2. W. S. Graves, J. Bessuille, P. Brown, S. Carbajo, V. Dolgashev, K.-H. Hong, E. Ihloff, B. Khaykovich, H. Lin, K. Murari, E. A. Nanni, G. Resta, S. Tantawi, L. E. Zapata, F. X. Kärtner, and D. E. Moncton, https://arxiv.org/pdf/1409.6954.pdf.

  3. CST Microwave Studio (Dassault Systèmes, 2023). https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.

  4. B. Hornberger, J. Kasahara, M. Gifford, R. Ruth, and R. Loewen, Proc. SPIE 11110, 1111003 (2019). https://doi.org/10.1117/12.2527356

    Article  Google Scholar 

  5. M. Svechnikov, D. Pariev, A. Nechay, et al., J. Appl. Crystallogr. 50, 1428 (2017).

    Article  ADS  CAS  Google Scholar 

  6. M. M. Barysheva, S. A. Garakhin, S. Yu. Zuev, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, N. I. Chkhalo, and S. Yulin, Quantum Electron. 49, 380 (2019).

    Article  ADS  CAS  Google Scholar 

  7. M. M. Barysheva, S. A. Garakhin, S. Yu. Zuev, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, R. M. Smertin, N. I. Chkhalo, and E. Meltchakov, Tech. Phys. 64, 1673 (2019).

    Article  CAS  Google Scholar 

  8. G. S. Lodha, S. Pandita, A. Gupta, R. V. Nandedkar, and K. Yamashita, Appl. Phys. A 62, 29 (1996). https://doi.org/10.1007/bf01568083

    Article  ADS  Google Scholar 

  9. B. K. Gan, B. A. Latella, R. W. Cheary, Appl. Surf. Sci. 239, 237 (2005). https://doi.org/10.1016/j.apsusc.2004.05.269

    Article  ADS  CAS  Google Scholar 

  10. T. W. Barbee, Jr., S. Mrowka, and M. C. Hettrick, Appl-. Opt. 24, 883 (1985). https://doi.org/10.1364/AO.24.000883

    Article  ADS  CAS  PubMed  Google Scholar 

  11. A. V. Vinogradov and B. Ya. Zeldovich, Appl. Opt. 16, 89 (1977). https://doi.org/10.1364/AO.16.000089

    Article  ADS  CAS  PubMed  Google Scholar 

  12. S. Boucher, P. Frigola, A. Murokh, M. Ruelas, I. Jovanovic, J. B. Rosenzweig, and G. Travish, Nucl. Instrum. Methods Phys. Res., Sect. A 608, 54 (2009). https://doi.org/10.1016/j.nima.2009.05.035

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 21-72-30 029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Garakhin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, S.S., Garakhin, S.A. & Chkhalo, N.I. Calculation of the Reflection Coefficient of Multilayer X-Ray Mirrors for Sources Based on Inverse Compton Scattering. J. Surf. Investig. 17 (Suppl 1), S250–S258 (2023). https://doi.org/10.1134/S1027451023070340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070340

Keywords:

Navigation